balaenoptera bonaerensis
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Volodymyr Tytar

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern Hemisphere endemic found throughout the Southern Hemisphere, generally south of 60°S in austral summer. Here they have been routinely observed in highest densities adjacent to and inside the sea ice edge, and where they feed predominantly on krill. Detecting abundance trends regarding this species by employing visual monitoring is problematic. Partly this is because the whales are frequently sighted within sea ice where navigational safety concerns prevent ships from surveying. In this respect species-habitat models are increasingly recognized as valuable tools to predict the probability of cetacean presence, relative abundance or density throughout an area of interest and to gain insight into the ecological processes affecting these patterns. The objective of this study was to provide this background information for the above research needs and in a broader context use species distribution models (SDMs) to establish a current habitat suitability description for the species and to identify the main environmental covariates related to its distribution. We used filtered 464 occurrences to generate the SDMs. We selected eight predictor variables with reduced collinearity for constructing the models: mean annuals of the surface temperature (ºC), salinity (PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration (mg/m³), primary productivity (g/m3/day), cloud cover (%), and bathymetry (m). Six modeling algorithms were test and the Bayesian additive regression trees (BART) model demonstrated the best preformance. Based on variable importance, those that best explained the environmental requirements of the species, were: sea ice concentration, chlorophyll-a concentration and topography of the sea floor (bathymetry), explaining in sum around 62% of the variance. Using the BART model, habitat preferences have been interpreted from patterns in partial dependence plots. Areas where the AMW have particularly high likelihood of occurrence are East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica Peninsula, areas bordering the Scotia–Weddell Confluence. Given the association of AMWs with sea ice the pagophilic character of their biology makes them particularly vulnerable to climate change and a perfect biological indicator for tracking these changes.


2022 ◽  
Author(s):  
Volodymyr Tytar

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern Hemisphere endemic found throughout the Southern Hemisphere, generally south of 60 degrees S in austral summer. Here they have been routinely observed in highest densities adjacent to and inside the sea ice edge, and where they feed predominantly on krill. Detecting abundance trends regarding this species by employing visual monitoring is problematic. Partly this is because the whales are frequently sighted within sea ice where navigational safety concerns prevent ships from surveying. In this respect species-habitat models are increasingly recognized as valuable tools to predict the probability of cetacean presence, relative abundance or density throughout an area of interest and to gain insight into the ecological processes affecting these patterns. The objective of this study was to provide this background information for the above research needs and in a broader context use species distribution models (SDMs) to establish a current habitat suitability description for the species and to identify the main environmental covariates related to its distribution. We used filtered 464 occurrences to generate the SDMs. We selected eight predictor variables with reduced collinearity for constructing the models: mean annuals of the surface temperature (degrees C), salinity (PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration (mg/cub. m), primary productivity (g/cub.m/day), cloud cover (%), and bathymetry (m). Six modeling algorithms were test and the Bayesian additive regression trees (BART) model demonstrated the best preformance. Based on variable importance, those that best explained the environmental requirements of the species, were: sea ice concentration, chlorophyll-a concentration and topography of the sea floor (bathymetry), explaining in sum around 62% of the variance. Using the BART model, habitat preferences have been interpreted from patterns in partial dependence plots. Areas where the AMW have particularly high likelihood of occurrence are East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica Peninsula, areas bordering the Scotia-Weddell Confluence. Given the association of AMWs with sea ice, the pagophilic character of their biology makes them particularly vulnerable to climate change and a perfect biological indicator for tracking these changes.


2021 ◽  
Author(s):  
Marcos Rossi-Santos ◽  
Diego Filun ◽  
William Soares-Filho ◽  
Alexandre Paro ◽  
Leonardo Wedekin

Acoustic methods can provide important data on the occurrence and distribution of migratory species. Information about Antarctic Minke whale (Balaenoptera bonaerensis) occurrence in the winter breeding grounds is scarce, mostly limited to old records from whaling stations before 1960’s international moratory, such as Costinha Station in Northeastern Brazil (6° S / 34° W). This work describes the occurrence of the Antarctic minke whale (AMW) through Bio-duck acoustic detections in the Santos Basin, South-Southeastern Brazil (22º and 28º S / 42º and 48º W), registered between November 12 and December 19, 2015. AMW calls were detected for 12 days. We detected and classified 9 different Bio-duck calls in Brazilian coast waters, evidencing a high diverse acoustic behaviour for the minke whale breeding ground. This is the first study to describe the acoustic diversity of AMW vocalizations in lower latitudes, constituting important information to the conservation and management of cetaceans and their habitat. Therefore, our study presents the foremost acoustic evidence of the Antarctic minke whale in Brazil, utilizing high technological passive acoustic methods, such as autonomous underwater vehicle (SeaGlider) sampling.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 621-629
Author(s):  
Mayuka Uchida ◽  
Ippei Suzuki ◽  
Keizo Ito ◽  
Mayumi Ishizuka ◽  
Yoshinori Ikenaka ◽  
...  

AbstractAntarctic minke whales (Balaenoptera bonaerensis) are migratory capital breeders that experience intensive summer feeding on Antarctic krill (Euphausia superba) in the Southern Ocean and winter breeding at lower latitudes, but their prey outside of the Antarctic is unknown. Stable isotope analyses were conducted on δ13C and δ15N from the baleen plates of ten pregnant Antarctic minke whales to understand the growth rate of the baleen plate and their diet in lower latitudes. Two to three oscillations along the length of the edge of the baleen plate were observed in δ15N, and the annual growth rate was estimated to be 75.2 ± 20.4 mm, with a small amplitude (0.97 ± 0.21 ‰). Bayesian stable isotope mixing models were used to understand the dominant prey that contributed to the isotopic component of the baleen plate using Antarctic krill from the stomach contents and reported values of Antarctic coastal krill (Euphausia crystallorophias), Antarctic silver fish (Pleuragramma antarcticum), Australian krill spp., and Australian pelagic fish spp.. The models showed that the diet composition of the most recent three records from the base of the baleen plates (model 1) and the highest δ15N values in each baleen plate (model 2) were predominantly Antarctic krill, with a contribution rate of approximately 80%. The rates were approximately 10% for Antarctic coastal krill and less than 2.0% for the two Australian prey groups in both models. These results suggest that pregnant Antarctic minke whales did not feed on enough prey outside of the Antarctic to change the stable isotope values in their baleen plates.


Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 259-273
Author(s):  
Céline Cunen ◽  
Lars Walløe ◽  
Kenji Konishi ◽  
Nils Lid Hjort

AbstractChanges in the body condition of Antarctic minke whales (Balaenoptera bonaerensis) have been investigated in a number of studies, but remain contested. Here we provide a new analysis of body condition measurements, with particularly careful attention to the statistical model building and to model selection issues. We analyse body condition data for a large number (4704) of minke whales caught between 1987 and 2005. The data consist of five different variables related to body condition (fat weight, blubber thickness and girth) and a number of temporal, spatial and biological covariates. The body condition variables are analysed using linear mixed-effects models, for which we provide sound biological motivation. Further, we conduct model selection with the focused information criterion (FIC), reflecting the fact that we have a clearly specified research question, which leads us to a clear focus parameter of particular interest. We find that there has been a substantial decline in body condition over the study period (the net declines are estimated to 10% for fat weight, 7% for blubber thickness and 3% for the girth). Interestingly, there seems to be some differences in body condition trends between males and females and in different regions of the Antarctic. The decline in body condition could indicate major changes in the Antarctic ecosystem, in particular, increased competition from some larger krill-eating whale species.


2020 ◽  
pp. 68-74
Author(s):  
O. Savenko ◽  
◽  

Antarctic Peninsula region is experiencing one of the fastest rates of climate change on Earth. Its waters are known as important feeding grounds for the Antarctic minke whales (Balaenoptera bonaerensis). The purpose of the present study was to reveal the summer and early autumn presence of the Antarctic minke whales in the area adjacent to the Kiev Peninsula of West Antarctica and to estimate the encounter rates of the species in the area. The boat-based photo-identification cetacean studies were initiated as part of the long-term monitoring program based at the Akademik Vernadsky station near the Kiev Peninsula of West Antarctica. From 22 January to 7 April 2019, 35 boat and yacht cruises of the 821 nautical miles of total length were conducted. There were encountered 13 Antarctic minke whales in 7 sightings. The encounter rate was 0.015 whales per nautical mile. Minke whales were encountered only in 5% of the total sightings. Three more whales were opportunistically seen from the top of Galindez Island. There were single whales sighted and small groups of up to 3 specimens (Med = 2). At least 2 individuals were identified as juveniles. Primary behavior for whales in 7 sightings was foraging, and 2 groups were observed while travelling. A total 9 individuals of the Antarctic minke whales were photo-identified during the survey, and no matches were found between the different encounters. Our pilot study indicates summer and early autumn presence of the Antarctic minke whales in the area adjacent to the Kiev Peninsula. But encounter rates seem to be low in comparison with results of some previous surveys. Our results show the possibility to monitor minke whales in the area, and further long-term complex monitoring is essential for understanding the ecology and population dynamics of the Antarctic minke whales in rapidly changing marine environment of the Antarctic Peninsula.


2019 ◽  
Author(s):  
Iris C�ceres-Saez ◽  
C�sar A. Gribaudo ◽  
Fabio A. Gribaudo ◽  
Javier Negrete ◽  
Marta Hevia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document