Arginine infusion rescues ovarian follicular development in feed-restricted Hu sheep during the luteal phase

2020 ◽  
Vol 158 ◽  
pp. 75-83
Author(s):  
Guo-Min Zhang ◽  
Yi-Xuan Guo ◽  
Chun-Yu Cheng ◽  
M.A. El-Samahy ◽  
Ran Tong ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


1995 ◽  
Vol 39 (3) ◽  
pp. 183-192 ◽  
Author(s):  
H. Twagiramungu ◽  
L.A. Guilbault ◽  
J.G. Proulx ◽  
R. Ramkumar ◽  
J.J. Dufour

1995 ◽  
Vol 145 (3) ◽  
pp. 479-490 ◽  
Author(s):  
B K Campbell ◽  
B M Gordon ◽  
C G Tsonis ◽  
R J Scaramuzzi

Abstract Ewes with ovarian autotransplants received either inhibin antiserum (10 ml i.v. raised in sheep against recombinant 32 kDa human inhibin; n=6) or sheep serum (10 ml i.v.; n=5) on day 3 of the luteal phase with additional daily injections (1 ml i.v.) from 48 h after the initial bolus until day 13. Jugular and ovarian venous blood samples were taken 4-hourly over days 2–13 of the luteal phase. Blood samples were also taken at more frequent intervals (every 10–15 min for 2–3 h) to examine pulsatile secretory responses from the ovary to endogenous and gonadotrophin-releasing hormone-induced (150 ng i.m.) LH pulses on days 4, 6, 8, 10 and 12 of the luteal phase. Plasma FSH levels, ovarian steroid secretion and ovarian follicular development were measured. The ovarian follicle population was estimated daily by real time ultrasound scanning. Immunisation against inhibin resulted in a 3- to 4-fold increase (P<0·001) in plasma FSH levels within 8 h with levels remaining elevated over controls for 6–7 days. Within 24 h of immunisation there was an increase in the number of small ovarian follicles (P<0·05) and by 3 days after treatment immunised ewes had 4–6 large ovarian follicles/ewe with this increase in the total number of large follicles being maintained for the rest of the experimental period (P<0·05). Mean ovarian oestradiol secretion during intensive bleeds was not different from controls 24 h after immunisation, but by 3 days after immunisation it was elevated 4- to 5-fold (P<0·001) over controls with this increase being maintained throughout the experiment. Similar responses to immunisation against inhibin in androstenedione secretion were observed although mean androstenedione secretion was not elevated until 7 days after treatment. In vitro antibody titres in immunised ewes remained elevated but declined steadily (P<0·001) over the experimental period. We conclude that the initial stimulation of follicle development and ovarian steroid secretion following passive immunisation against inhibin can be attributed to increased blood FSH. However, the fact that with time FSH declined but increased follicle development was sustained, despite maintenance of high circulating antibody titres, suggests that on a longer term basis inhibin immunisation may stimulate ovarian function by interfering with the modulation of follicle development by inhibin at an ovarian level. Journal of Endocrinology (1995) 145, 479–490


1996 ◽  
Vol 45 (1) ◽  
pp. 299 ◽  
Author(s):  
A.Gómez Brunet ◽  
A.López Sebastián ◽  
A.González de Bulnes ◽  
J.Santiago Moreno ◽  
M.García López

Sign in / Sign up

Export Citation Format

Share Document