The factor VIII heavy chain improves emicizumab-tenase assembly to enhance the factor VIII-mimicking cofactor activity

2018 ◽  
Vol 166 ◽  
pp. 77-79 ◽  
Author(s):  
Hiroaki Minami ◽  
Keiji Nogami ◽  
Tetsuhiro Soeda ◽  
Takehisa Kitazawa ◽  
Kunihiro Hattori ◽  
...  
Author(s):  
Yuto Nakajima ◽  
Hiroaki Minami ◽  
Keiji Nogami

AbstractFactor VIII (FVIII) is activated by thrombin-catalyzed cleavage at Arg372, Arg740, and Arg1689. Our previous studies suggested that thrombin interacted with the FVIII C2 domain specific for cleavage at Arg1689. An alternative report demonstrated, however, that a recombinant (r)FVIII mutant lacking the C2 domain retained >50% cofactor activity, indicating the presence of other thrombin-interactive site(s) associated with cleavage at Arg1689. We have focused, therefore, on the A3 acidic region of FVIII, similar to the hirugen sequence specific for thrombin interaction (54–65 residues). Two synthetic peptides, spanning residues 1659–1669 with sulfated Tyr1664 and residues 1675–1685 with sulfated Try1680, inhibited thrombin-catalyzed FVIII activation and cleavage at Arg1689. Treatment with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to cross-link thrombin with either peptide showed possible contributions of both 1664–1666 and 1683–1684 residues for thrombin interaction. Thrombin-catalyzed activation and cleavage at Arg1689 in the alanine-substituted rFVIII mutants within 1663–1666 residues were similar to those of wild type (WT). Similar studies of 1680–1684 residues, however, demonstrated that activation and cleavage by thrombin of the FVIII mutant with Y1680A or D1683A/E1684A, in particular, were severely or moderately reduced to 20 to 30% or 60 to 70% of WT, respectively. Surface plasmon resonance-based analysis revealed that thrombin interacted with both Y1680A and D1683A/E1684A mutants with approximately sixfold weaker affinities of WT. Cleavage at Arg1689 in the isolated light-chain fragments from both mutants was similarly depressed, independently of the heavy-chain subunit. In conclusion, the 1680–1684 residues containing sulfated Tyr1680 in the A3 acidic region also contribute to a thrombin-interactive site responsible for FVIII activation through cleavage at Arg1689.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Manjunath Goolyam Basavaraj ◽  
Sriram Krishnaswamy

Factor VIII (FVIII) with a multi-domain structure (A1-a1-A2-a2-B-a3-A3-C1-C2) is a procofactor and precursor for the anti-hemophilic cofactor protein, FVIIIa. Following the intracellular processing within the B domain, secreted FVIII circulates as a heterodimer with variably sized (90K-200K) heavy chain (A1-a1-A2-a2-B) and an 80K light chain (a3-A3-C1-C2). Proteolytic activation of FVIII by thrombin that yields heterotrimeric FVIIIa (A1-a1/A2-a2/A3-C1-C2), the cofactor for intrinsic tenase, involves cleavage of three peptide bonds between Arg372-Ser373, Arg740-Ser741, and Arg1689-Ser1690. Cleavage at Arg740 removes the B-domain, and cleavage at Arg1689 removes the a3-acidic region and releases FVIII from vWF, its carrier protein, and exposes membrane binding sites within the FVIII light chain. Cleavage at Arg372 separates A1-a1 and A2-a2 domains and is implicated in the cofactor-dependent recognition and enhancement in the rate of factor X (FX) activation by intrinsic tenase. Subsequently, the separated A2-a2 domain dissociates spontaneously from the heterotrimeric FVIIIa resulting in the rapid loss of cofactor activity. We speculated that the requirement for cleavage at Arg372 might be obviated by the insertion of an optimized linker sequence between A1-a1 and A2-a2 domains on an uncleavable Gln372 backbone. To investigate this possibility, we prepared cDNA constructs of B-domain deleted FVIII variants; FVIII wild-type (FVIIIWT), FVIII372Q, and FVIII372Q followed by a rigid (Ala-Pro)5 linker sequence (FVIII372Q-AP5). All three FVIII constructs were stably transfected into BHK cells and high expressing clones were selected by one stage aPTT and western blotting of expression media. Selected stable clones were further expanded to collect 15L of expression media over 5-day period, and recombinant FVIII variants were purified using a three-step chromatographic approach. These FVIII variants were studied using SDS-PAGE, western blotting, aPTT assays, thrombin generation assay (TGA) and purified assays to assess kinetics of FX activation and spontaneous loss of cofactor activity. In contrast to FVIIIWT, FVIII372Q and FVIII372Q-AP5 were completely resistant to cleavage at Gln372 by thrombin, yielding bands corresponding to A1-a1-A2-a2 (90K) and A3-C1-C2 (73K). In one stage aPTT assays, FVIII372Q showed prolonged clotting times with specific activity in the range of 200-400 U/mg, while FVIIIWT and FVIII372Q-AP5 displayed comparable clotting times with specific activities ranging between 8000-10000 U/mg and 4500-5500 U/mg, respectively. In TGA initiated with either 0.1 pM tissue factor or 1 pM factor XIa, both FVIIIWT and FVIII372Q-AP5 displayed similar TGA profiles. In steady state kinetic studies of FX activation using limiting concentrations of factor IXa, saturating concentrations of FVIII variants pretreated with thrombin, membranes and increasing concentrations of FX, the cofactor function of thrombin-cleaved FVIII372Q was severely impaired. However, despite lack of cleavage at Gln372 in FVIII372Q-AP5, catalytic efficiency for FX activation by intrinsic tenase assembled by this variant was comparable to that seen with FVIIIaWT. At the physiological concentration of FX, the initial velocity for Xa formation (v/E) for intrinsic tenase assembled with FVIIIa372Q-AP5 was within a factor of 2 of that observed with FVIIIaWT while the rate observed with FVIIIa372Q was >10-fold lower. Following rapid activation with thrombin, loss of cofactor function was significantly slower for FVIIIa372Q-AP5(t1/2 ~ 10 min) compared to FVIIIaWT (t1/2 ~ 2 min). Our findings indicate that the requirement for cleavage at Arg372 for the development of full FVIIIa cofactor function can be overcome by modulating the A1-A2 connector with an optimized linker sequence. Failure to yield an infinitely stable cofactor in the case of FVIIIa372Q-AP5 suggests that cleavage at Arg372 does not solely explain the spontaneous loss of FVIIIa cofactor function. Disclosures Krishnaswamy: Bayer: Research Funding.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1065-1074 ◽  
Author(s):  
John A. Samis ◽  
Marilyn Garrett ◽  
Reginald P. Manuel ◽  
Michael E. Nesheim ◽  
Alan R. Giles

The effect of human neutrophil elastase (HNE) on human factor V (F.V) or α-thrombin–activated human factor V (F.Va) was studied in vitro by prothrombinase assays, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and NH2 -terminal sequence analysis. Incubation of F.V (600 nmol/L) with HNE (2 nmol/L) in the presence of Ca2+ resulted in a time-dependent increase in its cofactor activity. In contrast, treatment of F.Va (600 nmol/L) with HNE (60 nmol/L) in the presence of Ca2+ resulted only in a time-dependent decrease in its cofactor activity. Under the conditions of these experiments, the maximum extent of F.V activation accomplished by incubation with HNE was approximately 65% to 70% of that observed with α-thrombin in presence of Ca2+. The extent of both the HNE-dependent enhancement in F.V cofactor activity and the HNE-dependent decrease in F.Va cofactor activity was not influenced by the addition of phosphatidylcholine/phosphatidylserine (PCPS) vesicles (50 μmol/L). The HNE-derived cleavage products of F.V, which correlated with increased cofactor activity, as demonstrated by SDS-PAGE under reducing conditions, were different from those generated using α-thrombin. Treatment of F.V (600 nmol/L) with HNE (2 nmol/L) in the presence of Ca2+ resulted in the production of three closely spaced doublets of: 99/97, 89/87, and 76/74 kD whose appearance over time correlated well with the increased cofactor activity as judged by densitometry. Treatment of F.Va (600 nmol/L) with HNE (60 nmol/L) in the presence of Ca2+ resulted in the cleavage of both the 96 kD heavy chain and the 74/72 kD light chain into products of: 56, 53, 35, 28, 22, and 12 kD. Although densitometry indicated that both the heavy and light chains of F.Va were hydrolyzed by HNE, cleavage of the 96 kD heavy chain was more extensive during the time period (10 to 30 minutes) of the greatest loss of F.Va cofactor activity. NH2 -terminal sequence analysis of F.V treated with HNE indicated cleavage at Ile819 and Ile1484 under conditions during which the procofactor expressed enhanced cofactor activity in the prothrombinase complex. NH2 -terminal sequence analysis of F.Va treated with HNE indicated cleavage at Ala341, Ile508, and Thr1767 under conditions, which the cofactor became inactivated, as measured by prothrombinase activity. The activation and inactivation cleavage sites are close to those cleaved by the physiological activator and inactivator of F.V and F.Va, namely α-thrombin (Arg709 and Arg1545) and Activated Protein C (APC) (Arg306 and Arg506), respectively. These results indicate that HNE can generate proteolytic products of F.V, which initially express significantly enhanced procoagulant cofactor activity similar to that observed following activation with α-thrombin. In contrast, HNE treatment of F.Va resulted only in the loss of its cofactor activity, but again, this is similar to that observed following inactivation by APC.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606 ◽  
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

Abstract A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


Blood ◽  
1977 ◽  
Vol 49 (5) ◽  
pp. 807-817 ◽  
Author(s):  
MB Hultin ◽  
FS London ◽  
SS Shapiro ◽  
WJ Yount

Abstract Previous studies using immunoneutralization techniques have shown that many factor VIII inhibitors are IgG antibodies of a single light chain type. We have investigated this apparent homogeneity by immunoneutralization assay and liquid isoelectric focusing of inhibitor fractions from five hemophiliacs and two nonhemophiliacs. By immunoneutralization assay, inhibitors from four hemophiliacs and one nonhemophiliac were exclusively k light chain type: the fifth hemophilic inhibitor was predominantly k1 and the second nonhemophilic inhibitor was a mixture of k and gamma. However, heavy chain subtyping of the six predominantly or exclusively k inhibitors showed all to be mixtures of IgG4 and IgG1. By isoelectric focusing, two inhibitors showed multiple peaks of activity between pH 5 and 9. The remaining five showed predominant peaks of activity, which were solely IgGk1 between pH 5.8 and 7, with smaller peaks between pH 7 and 9. The most acidic major peak, focusing at pH 6, was IgG4 in the three cases tested. Two of these acidic peaks neutralized factor VIII more efficiently than other peaks in the same focusing profiles, suggesting greater affinity for factor VIII. These studies demonstrate that factor VIII inhibitors are composed of heterogenous subpopulations of immunoglobulins which can be separated by isoelectric focusing.


Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 873-879 ◽  
Author(s):  
W Hanna ◽  
D McCarroll ◽  
T McDonald ◽  
P Painter ◽  
J Tuller ◽  
...  

Abstract The clinical course and coagulation profile of a pregnant patient with variant von Willebrand's disease were followed from the second trimester through puerperium. The clinical course was characterized by a normal delivery and absence of abnormal bleeding or need for replacement therapy. The coagulation profile demonstrated an increase in factor VIII procoagulant activity, factor-VIII-related antigen, and platelet aggregation activity in response to ristocetin prior to delivery. Postpartum, these factors decreased to prepregnancy values with distinctly different patterns. Factor VIII procoagulant activity continued to rise for 5 days after delivery and then decreased with a half-life of approximately 6 days. Factor-VIII-related antigen began to decrease just prior to delivery, displaying a half-life or approximately 6 days. Ristocetin cofactor activity, however, dropped immediately postpartum and displayed a half-life of approximately 6 hr. The ristocetin cofactor activity was associated with factor-VIII- related antigen, which displayed a significantly smaller molecular weight than does normal factor-VIII-related antigen. Larger aggregates of factor-VIII-related antigen. Larger aggregates of factor-VIII- related antigen did not appear during the pregnancy, and ristocetin cofactor activity could not be demonstrated in fragments of less than 0,8 x 10(6).


2007 ◽  
Vol 15 (10) ◽  
pp. 1856-1862 ◽  
Author(s):  
Lingxia Chen ◽  
Fuxiang Zhu ◽  
Juan Li ◽  
Hui Lu ◽  
Haiyan Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document