scholarly journals The Enhancing Effects of the Light Chain on Heavy Chain Secretion in Split Delivery of Factor VIII Gene

2007 ◽  
Vol 15 (10) ◽  
pp. 1856-1862 ◽  
Author(s):  
Lingxia Chen ◽  
Fuxiang Zhu ◽  
Juan Li ◽  
Hui Lu ◽  
Haiyan Jiang ◽  
...  
Blood ◽  
1977 ◽  
Vol 49 (5) ◽  
pp. 807-817 ◽  
Author(s):  
MB Hultin ◽  
FS London ◽  
SS Shapiro ◽  
WJ Yount

Abstract Previous studies using immunoneutralization techniques have shown that many factor VIII inhibitors are IgG antibodies of a single light chain type. We have investigated this apparent homogeneity by immunoneutralization assay and liquid isoelectric focusing of inhibitor fractions from five hemophiliacs and two nonhemophiliacs. By immunoneutralization assay, inhibitors from four hemophiliacs and one nonhemophiliac were exclusively k light chain type: the fifth hemophilic inhibitor was predominantly k1 and the second nonhemophilic inhibitor was a mixture of k and gamma. However, heavy chain subtyping of the six predominantly or exclusively k inhibitors showed all to be mixtures of IgG4 and IgG1. By isoelectric focusing, two inhibitors showed multiple peaks of activity between pH 5 and 9. The remaining five showed predominant peaks of activity, which were solely IgGk1 between pH 5.8 and 7, with smaller peaks between pH 7 and 9. The most acidic major peak, focusing at pH 6, was IgG4 in the three cases tested. Two of these acidic peaks neutralized factor VIII more efficiently than other peaks in the same focusing profiles, suggesting greater affinity for factor VIII. These studies demonstrate that factor VIII inhibitors are composed of heterogenous subpopulations of immunoglobulins which can be separated by isoelectric focusing.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4034-4034
Author(s):  
Lingxia Chen ◽  
Juan Li ◽  
Hui Lu ◽  
Haiyan Jiang ◽  
Rita Sarkar ◽  
...  

Abstract Blood coagulation Factor VIII (FVIII) is secreted as a heterodimer consisting of a heavy and light chain. Both in vitro and in vivo studies have demonstrated that these chains can be expressed independently. The expressed heavy and light chains can reassociate with recovery of biological activities. These observations have been particularly useful in a gene therapy setting since vector packaging capacity for adeno-associated virus (AAV) is a limiting factor. However, it has been demonstrated that the FVIII heavy chain is expressed ~10–100-fold less efficiently compared to the light chain when expressed independently. Previously the FVIII F309S mutation in the context of B-domainless FVIII (FVIII-BDD) and enhanced glycosylations within the B-domain have been shown to improve factor VIII expression and secretion. However, our in vitro studies indicate that these improvements in secretion were not retained when expressing the heavy chain alone with the same modifications. Other sequences, possibly in the light chain, may facilitate secretion. To investigate this further, we designed an intein trans-splicing strategy to control the addition of light chain to the heavy chain before secretion. Using HEK293 cells, we cotransfected seperate intein light chain and intein heavy chain plasmids and compared results to single plasmid transfected cells. 48 hours post-transfection, FVIII-specific ELISA results demonstrated that cotransfection of intein heavy chain and intein light chain had a significant influence on total heavy chain secretion compared to intein heavy chain expression alone. The co-transfected intein heavy chain and intein light chain were efficiently ligated together yielding a biologically active single chain FVIII derivative as demonstrated by clotting assays and Western blot analysis. Therefore, heavy chain secretion was directly enhanced by the attachment of the light chain to the C-terminus of the heavy chain. A similar phenomenon was not found when heavy and light chains were simply co-expressed in the same cell. It suggested that light chain functioned in cis. Hydrodynamic injection of plasmids with intein heavy chain and intein light chain into hemophilia A mice led to a much higher level of FVIII secretion. The amount of functional FVIII expression reached 3–6 units/ml at peak level. In the absence of intein light chain, FVIII heavy chain secretion was approximately 100 fold less efficient in vivo. To map the key elements of FVIII light in helping FVIII secretion, we made deletion variants in the light chain. These mutants had a dominant negative effect in reducing FVIII and FVIII heavy chain secretion while increasing the level of intracellular FVIII accumulation. Collectively our results are consistent with the conclusion that the FVIII light chain plays a critical role in facilitating heavy chain secretion in cis; probably through helping FVIII heavy chain maintain correct configuration and folding. The strategy to manipulate FVIII light chain addition through intein mediated trans-splicing reaction may also be explored for human gene therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1036-1036
Author(s):  
Tetsuhiro Soeda ◽  
Keiji Nogami ◽  
Tomoko Matsumoto ◽  
Kenichi Ogiwara ◽  
Katsumi Nishiya ◽  
...  

Abstract Factor VIIa (FVIIa), complexed with tissue factor (TF), is a trigger of blood coagulation through activation of factor X in the initiation phase. FVIIa can catalyze intrinsic clotting factors such as not only factor IX, but also factor VIII (FVIII). However the role and the mechanisms of the FVIIa-catalyzed FVIII are poorly understood. We first examined FVIIa-catalyzed FVIII activation in the presence of phospholipid (PL) using a one-stage clotting assay. The levels of FVIII activity elevated rapidly by ~4-fold within 30 sec after the addition of FVIIa (1 nM)-TF (1 nM)complex, and subsequently decreased to the initial level within 20 min. This time-dependent reaction was enhanced by the presence of TF and PL in dose-dependent manners, but was moderately inhibited (~50%) in the presence of von Willebrand factor at physiological concentration of 10 μg/mL. FVIII cleavage was evaluated using western blotting immediately after the addition of FVIIa-TF complex. The heavy chain of FVIII was proteolyzed more rapidly (at 15 sec) by cleavages at Arg740 (A2-B junction) and Arg372 (A1-A2 junction) by FVIIa-TF complex, whilst the cleavage at Arg336 in the A1 domain was appeared at ~2.5 min. However little cleavage of the light chain of FVIII was observed, supporting that cleavages at Arg740/Arg372 and Arg336 by FVIIa-TF complex contribute to the up- and down-regulation of FVIII(a) activity, respectively. Of interest, no proteolysis of isolated intact heavy chain was observed, indicating that the proteolysis of the heavy chain was governed by the presence of the light chain. Compared to FVIII activation by thrombin (0.1–1 nM), the activation by FVIIa (0.1–1 nM)-TF (1 nM) complex was observed more rapidly. The activation rate observed by the addition of FVIIa-TF complex was ~50-fold greater than that by thrombin. Kinetics by the chromogenic Xa generation assay showed the catalytic efficiency (kcat/Km; 8.9 min−1/32.8 nM) on FVIIa-TF complex-catalyzed FVIII activation showed ~4-fold greater than that on thrombin-catalyzed activation (kcat/Km; 7.5 min−1/86.4 nM). Furthermore, the catalytic efficiencies on cleavages at Arg740 and Arg372 of FVIII by FVIIa-TF complex were ~3- and ~20-fold greater compared to those by thrombin, respectively. These findings suggested that FVIIa-TF complex was a greater FVIII activator than thrombin in very early phase. In order to localize the binding region for FVIIa, we evaluated the interactions between FVIII subunit and Glu-Gly-Arg-active site modified FVIIa, lacking enzymatic activity, in a surface plasmon resonance-based assay. The heavy chain of FVIII bound to EGR-FVIIa with higher affinity than the light chain (Kd; 2.1 and 45 nM, respectively). Binding was particularly evident with the A2, A3, and C2 domains (Kd; 34, 37, and 44 nM, respectively), whilst the A1 domain failed to bind. In conclusion, we demonstrated that FVIIa-TF complex rapidly activated FVIII by proteolysis of the heavy chain and the activation was governed by the presence of the light chain. Furthermore, present results suggested the role of TF-dependent FVIII activation by FVIIa which is responsible for the initiation phase of blood coagulation.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3120-3126 ◽  
Author(s):  
BJ Lamphear ◽  
PJ Fay

Abstract Factor IXa was shown to inactivate both factor VIII and factor VIIIa in a phospholipid-dependent reaction that could be blocked by an antifactor IX antibody. Factor IXa-catalyzed inactivation correlated with proteolytic cleavages within the A1 subunit of factor VIIIa and within the heavy chain (contiguous A1-A2-B domains) of factor VIII. Furthermore, a relatively slow conversion of factor VIII light chain to a 68-Kd fragment was observed after prolonged incubation. Sites of cleavage were identified within the A1 domain at Arg336-Met337 and within the factor VIII light chain at Arg1719-Asn1720. Factor IXa failed to cleave isolated factor VIII heavy chains, yet cleaved isolated factor VIII light chain. In addition, the purified A1/A3-C1-C2 dimer derived from factor VIIIa was a substrate for factor IXa; however, cleavage of the A1 subunit occurred at less than 30% the rate of cleavage of A1 in trimeric factor VIIIa. These data suggest that factor VIII light chain contributes to the binding site for factor IXa and also support a role for a heavy chain determinant located within the A2 subunit in the association of factor VIIIa with factor IXa. Furthermore, the capacity of factor IXa to proteolytically inactivate its cofactor, factor VIIIa, suggests a mode of regulation within the intrinsic tenase complex.


1995 ◽  
Vol 312 (1) ◽  
pp. 49-55 ◽  
Author(s):  
M J S H Donath ◽  
R T M de Laaf ◽  
P T M Biessels ◽  
P J Lenting ◽  
J W van de Loo ◽  
...  

A factor VIII variant has been characterized in which the heavy chain is directly fused to the light chain. Des-(741-1668)-factor VIII lacks the processing site at Arg1648, as Arg740 of the heavy chain is fused to Ser1669 of the light chain. The sequence of the fusion site is similar to that of other cleavage sites in factor VIII. The fusion site of des-(741-1668)-factor VIII was readily cleaved by both thrombin and factor Xa, and the same result was obtained for heavy chain cleavage. In contrast, des-(741-1668)-factor VIII cleavage by thrombin at position Arg1689 proceeded at a lower rate than the analogous cleavage by factor Xa, which presumably takes place at position Arg1721. The rate of cleavage at position Arg1689 by thrombin was also lower than that at the other processing sites. When des-(741-1668)-factor VIII was activated by thrombin, initial rates of factor Xa formation were similar to the rates obtained when plasma-derived factor VIII was activated by thrombin or factor Xa. Remarkably, activation of des-(741-1668)-factor VIII proceeded at a higher rate by factor Xa than by thrombin. These results indicate that factor VIII activation is strongly associated with cleavage at position Arg1689 or Arg1721. For the interaction between des-(741-1668)-factor VIII and von Willebrand factor, a Kd value of (0.8 +/- 0.3) x 10(-10) M was determined, which is similar to that of heterodimeric factor VIII. The affinity of single-chain des-(741-1668)-factor VIII for factor IXa was found to be 27 +/- 6 nM. The in vivo recovery and half-life of des-(741-1668)-factor VIII were assessed in guinea pigs. Upon infusion of des-(741-1668)-factor VIII at a dosage of 50 units/kg body weight, a rise of 1.0 +/- 0.3 unit/ml in factor VIII activity was obtained. The same recovery was determined for wild-type factor VIII. The half-life of des-(741-1668)-factor VIII was found to be 3 +/- 1 h, compared with 4 +/- 2 h for heterodimeric recombinant factor VIII. In conclusion, des-(741-1668)-factor VIII displays normal activity, is readily cleaved by thrombin and factor Xa at its fusion site, binds with high affinity to von Willebrand factor and factor IXa, and behaves like heterodimeric recombinant factor VIII in guinea pigs. By virtue of these properties, des-(741-1668)-factor VIII may prove useful for the treatment of bleeding episodes in patients with haemophilia A.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3120-3126 ◽  
Author(s):  
BJ Lamphear ◽  
PJ Fay

Factor IXa was shown to inactivate both factor VIII and factor VIIIa in a phospholipid-dependent reaction that could be blocked by an antifactor IX antibody. Factor IXa-catalyzed inactivation correlated with proteolytic cleavages within the A1 subunit of factor VIIIa and within the heavy chain (contiguous A1-A2-B domains) of factor VIII. Furthermore, a relatively slow conversion of factor VIII light chain to a 68-Kd fragment was observed after prolonged incubation. Sites of cleavage were identified within the A1 domain at Arg336-Met337 and within the factor VIII light chain at Arg1719-Asn1720. Factor IXa failed to cleave isolated factor VIII heavy chains, yet cleaved isolated factor VIII light chain. In addition, the purified A1/A3-C1-C2 dimer derived from factor VIIIa was a substrate for factor IXa; however, cleavage of the A1 subunit occurred at less than 30% the rate of cleavage of A1 in trimeric factor VIIIa. These data suggest that factor VIII light chain contributes to the binding site for factor IXa and also support a role for a heavy chain determinant located within the A2 subunit in the association of factor VIIIa with factor IXa. Furthermore, the capacity of factor IXa to proteolytically inactivate its cofactor, factor VIIIa, suggests a mode of regulation within the intrinsic tenase complex.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1481-1481
Author(s):  
Hiroaki Minami ◽  
Keiji Nogami ◽  
Takehisa Kitazawa ◽  
Kunihiro Hattori ◽  
Midori Shima

Abstract Background: ACE910, asymmetric bispecific monoclonal antibodies to activated factor IX (IXa) and factor X, mimics the cofactor function of activated factor VIII (VIIIa) by modulating an optimal position on the tenase assembly. The estimated therapeutic range of ACE910 shows ~30% of thrombin generation in native tenase assembly, supporting that the structure on ACE910-mimicking tenase assembly is different from that on native tenase. Being close to physiological structure consisting from factor IXa, factor X, and factor VIIIa is important for potentiating the clotting function. We examined the effects of factor VIII subunits (light chain, heavy chain, A1 and A2, C2) on ACE910-tenase. Materials/Methods: The factor VIII light chain and heavy chain were isolated from EDTA-treated recombinant factor VIII following chromatography on SP- and Q- Sepharose columns. The A2 and A1 subunits were purified from thrombin-cleaved factor VIII heavy chain by Heparin-, SP- Sepharose columns. Purified factor Xa generation assays was examined with (i) factor VIII subunit (0-40 nM), ACE910 (10 µg/ml), phospholipid (PL) (40 µM), factor IXa (1 nM) and factor X (200 nM), (ii, iii) the A2 or heavy chain (40 nM), ACE910 (10 µg/ml), PL (40 µM), factor IXa and factor X (1 or 0-80 nM, and 0-300 or 200 nM, respectively). These mixtures were reacted for five minutes (i, ii) or one minute (iii). These assays were conducted at 37 °C. Results: (i) The factor Xa generation in ACE910-tenase complex in the absence of factor VIIIa was 10.1±2.2 nM. With the intact heavy chain and A2, amounts of factor Xa were increased dose-dependently, resulting in 1.3- and 1.2-fold increases, respectively. While, the light chain and A1 subunit failed to increase at all. (ii) Vmax for factor X in ACE910-tenase was 173.0±7.0 nM and Km was 31.2±3.9 nM. Vmax obtained with the heavy chain or A2 was 175.9±6.1 or 159.0±6.1 nM, whilst Km was 17.0±2.2 or 31.9±3.5 nM, respectively, indicating that the heavy chain enhanced the binding affinity for factor X in ACE910-tenase. (iii) Vmax for factor IXa in ACE910-tenase was 43.8±2.7 nM and Km was 36.9±4.8 nM. With the heavy chain or A2, Vmax was 46.8±3.0 or 45.0±3.1 nM, and Km was 36.4±3.0 or 32.1±4.9 nM, respectively, indicating that either the heavy chain or A2 did not enhance the catalytic activity and the binding affinity for factor IXa in ACE910-tenase. Conclusion: ACE910-tenase assembly seems to be close to physiological structure by the presence of intact heavy chain interacting with factor X. In addition, ACE910 may substitute the position such as the factor VIII(a) light chain associated with FIXa and FX on ACE910-tenase assembly defecting factor VIII. Disclosures Minami: Chugai Pharmaceutical Co., Ltd.: Research Funding. Nogami:Chugai Pharmaceutical Co., Ltd.: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kitazawa:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Hattori:Chugai Pharmaceutical Co., Ltd.: Employment, Equity Ownership, Patents & Royalties. Shima:Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


1999 ◽  
Vol 81 (01) ◽  
pp. 39-44 ◽  
Author(s):  
R. Laub ◽  
Di Giambattista ◽  
P. Fondu ◽  
H.-H. Brackmann ◽  
H. Lenk ◽  
...  

SummaryTo reduce the risk of transmission of hepatitis A virus, an Octaphar-ma produced factor VIII (fVIII) concentrate treated with solvent detergent (FVIII-SD) was further pasteurized after purification. This product, Octavi SDPlus (FVIII-SDP), was marketed in Europe in 1993 to 1995. Inhibitors appeared from September to October, 1995, in 12 of 109 previously treated German hemophilia A patients. A study of similarly treated Belgian patients, who also developed inhibitors, had shown antibodies to the fVIII light chain (domains A3-C1-C2) only. In the present study, the epitope specificity of 8 German inhibitor plasmas was also found to be restricted to the light chain. In radioimmunoprecipitation assays to localize the light chain epitope(s), antibody binding to heavy chain (domains A1-A2-B) was 11-148 fold lower than to the C2 domain, and binding to recombinant A3-C1 was barely detectable. These results were supported by >95% neutralization of a high responder inhibitor titer by the C2 domain.


2011 ◽  
Vol 56 (2) ◽  
pp. 158-163 ◽  
Author(s):  
FuXiang Zhu ◽  
ShuDe Yang ◽  
ZeLong Liu ◽  
Jing Miao ◽  
HuiGe Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document