Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes

2013 ◽  
Vol 38 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Brian W. Wong ◽  
Anna Kuchnio ◽  
Ulrike Bruning ◽  
Peter Carmeliet
Development ◽  
2021 ◽  
Vol 148 (23) ◽  
Author(s):  
Yida Jiang ◽  
Li-Juan Duan ◽  
Guo-Hua Fong

ABSTRACT Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.


2017 ◽  
Vol 8 ◽  
Author(s):  
Indranil Sinha ◽  
Dharaniya Sakthivel ◽  
Benjamin A. Olenchock ◽  
Carla R. Kruse ◽  
Jeremy Williams ◽  
...  

2008 ◽  
Vol 16 (7) ◽  
pp. 1227-1234 ◽  
Author(s):  
Shourong Wu ◽  
Nobuhiro Nishiyama ◽  
Mitsunobu R Kano ◽  
Yasuyuki Morishita ◽  
Kohei Miyazono ◽  
...  

Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 127-140 ◽  
Author(s):  
Shaohong Cheng ◽  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Jan Schulte ◽  
Subburaman Mohan

Abstract The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice.


Hypoxia ◽  
2018 ◽  
Vol Volume 6 ◽  
pp. 57-71 ◽  
Author(s):  
Kerstin Lippl ◽  
Anna Boleininger ◽  
Michael McDonough ◽  
Martine I. Abboud ◽  
Hanna Tarhonskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document