Protective effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia–reperfusion-induced apoptotic cell death

Toxicology ◽  
2005 ◽  
Vol 209 (1) ◽  
pp. 1-14 ◽  
Author(s):  
H. Parlakpinar ◽  
E. Sahna ◽  
A. Acet ◽  
B. Mizrak ◽  
A. Polat
2005 ◽  
Vol 289 (5) ◽  
pp. H2265-H2271 ◽  
Author(s):  
Jiangning Tan ◽  
Zhizhong Ma ◽  
Ling Han ◽  
Ruyu Du ◽  
Liming Zhao ◽  
...  

Although great achievements have been made in elucidating the molecular mechanisms contributing to acute myocardial ischemia/reperfusion (I/R) injury, an effective pharmacological therapy to protect cardiac tissues from serious damage associated with acute myocardial infarction, coronary arterial bypass grafting surgery, or acute coronary syndromes has not been developed. We examined the in vivo cardioprotective effects of caffeic acid phenethyl ester (CAPE), a natural product with potent anti-inflammatory, antitumor, and antioxidant activities. CAPE was systemically delivered to rabbits either 60 min before or 30 min after surgically inducing I/R injury. Infarct dimensions in the area at risk were reduced by >2-fold ( P < 0.01) with CAPE treatment at either period. Accordingly, serum levels of normally cytosolic enzymes lactate dehydrogenase, creatine kinase (CK), MB isoenzyme of CK, and cardiac-specific troponin I were markedly reduced in both CAPE treatment groups ( P < 0.05) compared with the vehicle-treated control group. CAPE-treated tissues displayed significantly less cell death ( P < 0.05), which was in part due to inhibition of p38 mitogen-activated protein kinase activation and reduced DNA fragmentation often associated with caspase 3 activation ( P < 0.05). In addition, CAPE directly blocked calcium-induced cytochrome c release from mitochondria. Finally, the levels of inflammatory proteins IL-1β and TNF-α expressed in the area at risk were significantly reduced with CAPE treatment ( P < 0.05). These data demonstrate that CAPE has potent cardioprotective effects against I/R injury, which are mediated, at least in part, by the inhibition of inflammatory and cell death responses. Importantly, protection is conferred when CAPE is systemically administered after the onset of ischemia, thus demonstrating potential efficacy in the clinical scenario.


Shock ◽  
2005 ◽  
Vol 24 (1) ◽  
pp. 97-100 ◽  
Author(s):  
Mehmet Kaya Ozer ◽  
Hakan Parlakpinar ◽  
Nigar Vardi ◽  
Yilmaz Cigremis ◽  
Muharrem Ucar ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Huaying Fan ◽  
Liu Yang ◽  
Fenghua Fu ◽  
Hui Xu ◽  
Qinggang Meng ◽  
...  

Salvianolic acid A (SAA), one of the major active components of Danshen that is a traditional Chinese medicine, has been reported to possess protective effect in cardiac diseases and antioxidative activity. This study aims to investigate the cardioprotection of SAAin vivoandin vitrousing the model of myocardial ischemia-reperfusion in rat and hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts apoptosis. It was found that SAA significantly limited infarct size of ischemic myocardium when given immediately prior to reperfusion. SAA also significantly suppressed cellular injury and apoptotic cell death. Additionally, the results of western blot and phospho-specific antibody microarray analysis showed that SAA could up-regulate Bcl-2 expression and increase the phosphorylation of proteins such as Akt, p42/p44 extracellular signal-related kinases (Erk1/2), and their related effectors. The phosphorylation of those points was related to suppress apoptosis. In summary, SAA possesses marked protective effect on myocardial ischemia-reperfusion injury, which is related to its ability to reduce myocardial cell apoptosis and damage induced by oxidative stress. The protection is achieved via up-regulation of Bcl-2 expression and affecting protein phosphorylation. These findings indicate that SAA may be of value in cardioprotection during myocardial ischemia-reperfusion injury, which provide pharmacological evidence for clinical application.


Sign in / Sign up

Export Citation Format

Share Document