Alternative Animal Models in Predictive Toxicology

Toxicology ◽  
2021 ◽  
pp. 153053
Author(s):  
Muhammad Nur Hamizan Khabib ◽  
Yogeethaa Sivasanku ◽  
Hong Boon Lee ◽  
Suresh Kumar ◽  
Chin Siang Kue
2019 ◽  
Vol 476 (7) ◽  
pp. 1149-1158 ◽  
Author(s):  
Stephen Lynch ◽  
Chris S. Pridgeon ◽  
Carrie A. Duckworth ◽  
Parveen Sharma ◽  
B. Kevin Park ◽  
...  

Abstract Adverse drug reactions (ADRs) are the unintended side effects of drugs. They are categorised as either predictable or unpredictable drug-induced injury and may be exhibited after a single or prolonged exposure to one or multiple compounds. Historically, toxicology studies rely heavily on animal models to understand and characterise the toxicity of novel compounds. However, animal models are imperfect proxies for human toxicity and there have been several high-profile cases of failure of animal models to predict human toxicity e.g. fialuridine, TGN1412 which highlight the need for improved predictive models of human toxicity. As a result, stem cell-derived models are under investigation as potential models for toxicity during early stages of drug development. Stem cells retain the genotype of the individual from which they were derived, offering the opportunity to model the reproducibility of rare phenotypes in vitro. Differentiated 2D stem cell cultures have been investigated as models of hepato- and cardiotoxicity. However, insufficient maturity, particularly in the case of hepatocyte-like cells, means that their widespread use is not currently a feasible method to tackle the complex issues of off-target and often unpredictable toxicity of novel compounds. This review discusses the current state of the art for modelling clinically relevant toxicities, e.g. cardio- and hepatotoxicity, alongside the emerging need for modelling gastrointestinal toxicity and seeks to address whether stem cell technologies are a potential solution to increase the accuracy of ADR predictivity in humans.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


2020 ◽  
Vol 134 (3) ◽  
pp. 248-266
Author(s):  
Javed Iqbal ◽  
Frank Adu-Nti ◽  
Xuejiao Wang ◽  
Hui Qiao ◽  
Xin-Ming Ma
Keyword(s):  

1991 ◽  
Author(s):  
Peter N. Temesy-Arnos ◽  
◽  
Theodore D. Fraker ◽  
R. Douglas Wilkerson

2007 ◽  
Author(s):  
Celine Fouquet ◽  
Kinga Igloi ◽  
Alain Berthoz ◽  
Laure Rondi-Reig

Sign in / Sign up

Export Citation Format

Share Document