Role of the transcription factor NF-κB in the production of TNF-α induced by a snake venom metalloproteinase in macrophages

Toxicon ◽  
2019 ◽  
Vol 168 ◽  
pp. S22
Author(s):  
Camila Vieira Verardo ◽  
Giovanna De Arruda Caires ◽  
Cristina Maria Fernandes ◽  
José Maria Gutiérrez ◽  
Catarina Teixeira
2002 ◽  
Vol 22 (5) ◽  
pp. 576-585 ◽  
Author(s):  
Olivia Hurtado ◽  
Ignacio Lizasoain ◽  
Paz Fernández-Tomé ◽  
Alberto Álvarez-Barrientos ◽  
Juan C. Leza ◽  
...  

The role of the tumor necrosis factor (TNF)-α convertase (TACE/ADAM17) in the adult nervous system remains poorly understood. The authors have previously demonstrated that TACE is upregulated in rat forebrain slices exposed to oxygen–glucose deprivation (OGD). They have now used rat mixed cortical cultures exposed to OGD or glutamate to study (1) TACE expression and localization, and (2) the effects of TNF-α release on cell viability. OGD- or glutamate-caused TNF-α release, an effect that was blocked by the TACE inhibitor BB3103 (BB) (0.1–1 μmol/L; control: 1.67 ± 0.59; OGD: 6.59 ± 1.52; glutamate: 3.38 ± 0.66; OGD ± BB0.1: 3.23 ± 0.67; OGD ± BB1: 1.33 ± 0.22 pg/mL, n = 6, P < 0.05). Assay of TACE activity as well as Western blot showed that TACE expression is increased in OGD- or glutamate-exposed cells. In control cultures, TACE immunoreactivity was present in some microglial cells, whereas, after OGD or glutamate, TACE immunostaining appeared in most microglial cells and in some astrocytes. Conversely, BB3103 (0.1 μmol/L) caused apoptosis after glutamate exposure as shown by annexin and Hoechst 33342 staining and caspase-3 activity, an effect mimicked by the proteasome inhibitor MG-132 (caspase activity: glutamate: 5.1 ± 0.1; glutamate + BB: 7.8 ± 0.8; glutamate + MG: 11.9 ± 0.5 pmol · min−1 mg−1 protein, n = 4, P < 0.05), suggesting that translocation of the transcription factor NF-κB mediates TNF-α–induced antiapoptotic effect. Taken together, these data demonstrate that, in rat mixed neuronal–glial cortical cultures exposed to OGD or glutamate, (1) TACE/ADAM17 activity accounts for the majority of TNF-α shedding, (2) an increase in glial TACE expression contributes to the rise in TNF-α, and (3) TNF-α release in this setting inhibits apoptosis via activation of the transcription factor NF-κB.


2021 ◽  
Author(s):  
Stephan J. Matissek ◽  
Weiguo Han ◽  
Adam Hage ◽  
Mona Karbalivand ◽  
Ricardo Rajsbaum ◽  
...  

AbstractThe transcription factor GLI3 is a member of the GLI family and has been shown to be regulated by canonical hedgehog (HH) signaling through smoothened (SMO). Little is known about SMO-independent regulation of GLI3. Here, we identify TLR signaling as a novel pathway regulating GLI3 expression. We show that GLI3 expression is induced by LPS/TLR4 in human monocyte cell lines and peripheral blood CD14+ cells. Further analysis identified TRIF, but not MyD88, signaling as the adapter used by TLR4 to regulate GLI3. Using pharmacological and genetic tools, we identified IRF3 as the transcription factor regulating GLI3 downstream of TRIF. Furthermore, using additional TLR ligands that signal exclusively through TRIF such as the TLR4 ligand, MPLA and the TLR3 ligand, Poly(I:C), we confirm the role of TRIF-IRF3 in the regulation of GLI3. We found that IRF3 directly binds to the GLI3 promoter region and this binding was increased upon stimulation of TRIF-IRF3 with Poly(I:C). Furthermore, using IRF3−/− MEFs, we found that Poly(I:C) stimulation no longer induced GLI3 expression. Finally, using macrophages from mice lacking Gli3 expression in myeloid cells (M-Gli3−/−), we found that in the absence of Gli3, LPS stimulated macrophages secrete less CCL2 and TNF-α compared with macrophages from wild-type (WT) mice. Taken together, these results identify a novel TLR-TRIF-IRF3 pathway that regulates the expression of GLI3 that regulates inflammatory cytokines and expands our understanding of the non-canonical signaling pathways involved in the regulation of GLI transcription factors.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 331
Author(s):  
Young-Ah Kim ◽  
Hyun-Ju Kim ◽  
Mi-Gyeong Gwon ◽  
Hyemin Gu ◽  
Hyun-Jin An ◽  
...  

Autophagy in the proximal tubules may promote fibrosis by activating tubular cell death, interstitial inflammation, and the production of pro-fibrotic factors. The signal transducer and activator of transcription 3 (STAT3) is activated as a potential transcription factor, which mediates the stimulation of renal fibrosis. We investigated the role of the STAT3 in autophagy and its effect on the prevention of interstitial renal fibrosis. In this study, we use synthesized STAT3 decoy oligonucleotides (ODN), which were injected into the tail veins of unilateral ureteral obstruction (UUO) mice, to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and collagen were decreased by STAT3 decoy ODN. The autophagy markers microtubule-associated protein light chain 3 (LC3) and fibronectin, were identified through immunofluorescent staining, indicating that they were reduced in the group injected with ODN. The expressions of LC3, Beclin1, p62, and autophagy-related 5–12 (Atg5–12) and hypoxia inducible factor-1α (HIF-1α) were inhibited in the ODN injection group. We determined the inhibitory effect of autophagy in chronic kidney disease and confirmed that STAT3 decoy ODN effectively inhibited autophagy by inhibiting the expression of STAT3 transcription factors in the UUO group.


2007 ◽  
Vol 151 (8) ◽  
pp. 1254-1261 ◽  
Author(s):  
C M Fernandes ◽  
C de Fátima Pereira Teixeira ◽  
A C R M Leite ◽  
J M Gutiérrez ◽  
F A C Rocha

Toxicon ◽  
2005 ◽  
Vol 45 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Fernando Chaves ◽  
Catarina F.P. Teixeira ◽  
José María Gutiérrez

Toxicon ◽  
2019 ◽  
Vol 168 ◽  
pp. S22
Author(s):  
Giovanna De Arruda Caires ◽  
Camila Vieira Verardo ◽  
Elbio Leiguez ◽  
José M. Gutiérrez ◽  
Catarina Teixeira ◽  
...  

Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

2001 ◽  
Vol 120 (5) ◽  
pp. A541-A541
Author(s):  
K KITAMURA ◽  
J NIIKAWA ◽  
T IMAMURA ◽  
A TAKAHASHI ◽  
A IKEGAMI ◽  
...  
Keyword(s):  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1962-P
Author(s):  
TAKUYA MINAMIZUKA ◽  
YOSHIRO MAEZAWA ◽  
HARUHIDE UDAGAWA ◽  
YUSUKE BABA ◽  
MASAYA KOSHIZAKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document