monocyte cell
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 36)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianan Zhao ◽  
Shicheng Guo ◽  
Steven J. Schrodi ◽  
Dongyi He

Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.


2021 ◽  
Vol 68 ◽  
Author(s):  
Hanieh Mohammad Rahimi ◽  
Sara Nemati ◽  
Helia Alavifard ◽  
Kaveh Baghaei ◽  
Hamed Mirjalali ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Domenico Somma ◽  
Fatma O. Kok ◽  
David Kerrigan ◽  
Christine A. Wells ◽  
Ruaidhrí J. Carmody

Since its discovery over 30 years ago the NF-ĸB family of transcription factors has gained the status of master regulator of the immune response. Much of what we understand of the role of NF-ĸB in immune development, homeostasis and inflammation comes from studies of mice null for specific NF-ĸB subunit encoding genes. The role of inflammation in diseases that affect a majority of individuals with health problems globally further establishes NF-ĸB as an important pathogenic factor. More recently, genomic sequencing has revealed loss of function mutations in the NFKB1 gene as the most common monogenic cause of common variable immunodeficiencies in Europeans. NFKB1 encodes the p105 subunit of NF-ĸB which is processed to generate the NF-ĸB p50 subunit. NFKB1 is the most highly expressed transcription factor in macrophages, key cellular drivers of inflammation and immunity. Although a key role for NFKB1 in the control of the immune system is apparent from Nfkb1-/- mouse studies, we know relatively little of the role of NFKB1 in regulating human macrophage responses. In this study we use the THP1 monocyte cell line and CRISPR/Cas9 gene editing to generate a model of NFKB1-/- human macrophages. Transcriptomic analysis reveals that activated NFKB1-/- macrophages are more pro-inflammatory than wild type controls and express elevated levels of TNF, IL6, and IL1B, but also have reduced expression of co-stimulatory factors important for the activation of T cells and adaptive immune responses such as CD70, CD83 and CD209. NFKB1-/- THP1 macrophages recapitulate key observations in individuals with NFKB1 haploinsufficiency including decreased IL10 expression. These data supporting their utility as an in vitro model for understanding the role of NFKB1 in human monocytes and macrophages and indicate that of loss of function NFKB1 mutations in these cells is an important component in the associated pathology.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1139
Author(s):  
Carla Iacobini ◽  
Martina Vitale ◽  
Giuseppe Pugliese ◽  
Stefano Menini

Intracellular metabolism of excess glucose induces mitochondrial dysfunction and diversion of glycolytic intermediates into branch pathways, leading to cell injury and inflammation. Hyperglycemia-driven overproduction of mitochondrial superoxide was thought to be the initiator of these biochemical changes, but accumulating evidence indicates that mitochondrial superoxide generation is dispensable for diabetic complications development. Here we tested the hypothesis that hypoxia inducible factor (HIF)-1α and related bioenergetic changes (Warburg effect) play an initiating role in glucotoxicity. By using human endothelial cells and macrophages, we demonstrate that high glucose (HG) induces HIF-1α activity and a switch from oxidative metabolism to glycolysis and its principal branches. HIF1-α silencing, the carbonyl-trapping and anti-glycating agent ʟ-carnosine, and the glyoxalase-1 inducer trans-resveratrol reversed HG-induced bioenergetics/biochemical changes and endothelial-monocyte cell inflammation, pointing to methylglyoxal (MGO) as the non-hypoxic stimulus for HIF1-α induction. Consistently, MGO mimicked the effects of HG on HIF-1α induction and was able to induce a switch from oxidative metabolism to glycolysis. Mechanistically, methylglyoxal causes HIF1-α stabilization by inhibiting prolyl 4-hydroxylase domain 2 enzyme activity through post-translational glycation. These findings introduce a paradigm shift in the pathogenesis and prevention of diabetic complications by identifying HIF-1α as essential mediator of glucotoxicity, targetable with carbonyl-trapping agents and glyoxalase-1 inducers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shirleny R Cardosa ◽  
B. William Ogunkolade ◽  
Rob Lowe ◽  
Emanuel Savage ◽  
Charles A Mein ◽  
...  

Abstract Background Betel-nut consumption is the fourth most common addictive habit globally and there is good evidence linking the habit to obesity, type 2 diabetes (T2D) and the metabolic syndrome. The aim of our pilot study was to identify gene expression relevant to obesity, T2D and the metabolic syndrome using a genome-wide transcriptomic approach in a human monocyte cell line incubated with arecoline and its nitrosated products. Results The THP1 monocyte cell line was incubated separately with arecoline and 3-methylnitrosaminopropionaldehyde (MNPA) in triplicate for 24 h and pooled cDNA indexed paired-end libraries were sequenced (Illumina NextSeq 500). After incubation with arecoline and MNPA, 15 and 39 genes respectively had significant changes in their expression (q < 0.05, log fold change 1.5). Eighteen of those genes have reported associations with T2D and obesity in humans; of these genes there was most marked evidence for CLEC10A, MAPK8IP1, NEGR1, NQ01 and INHBE genes. Conclusions Our preliminary studies have identified a large number of genes relevant to obesity, T2D and metabolic syndrome whose expression was changed significantly in human TPH1 cells following incubation with betel-nut derived arecoline or with MNPA. These findings require validation by further cell-based work and investigation amongst betel-chewing communities.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4419
Author(s):  
Marialucia Gallorini ◽  
Monica Rapino ◽  
Helmut Schweikl ◽  
Amelia Cataldi ◽  
Rosa Amoroso ◽  
...  

Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.e., 4-(ethanimidoylamino)-N-(4-fluorophenyl)benzamide hydrobromide (FAB1020) and N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamidedihydrochloride (CM554), on human LPS-stimulated monocytes, using the 1400 W compound as a comparison. Our results show that CM544 and FAB1020 are selective and decrease cytotoxicity, IL-6 secretion and LPS-stimulated monocyte migration. Furthermore, the modulation of iNOS, nitrotyrosine and Nrf2 were analyzed at the protein level. Based on the collected preliminary results, the promising therapeutic value of the investigated compounds emerges, as they appear able to modulate the pro-inflammatory LPS-stimulated response in the low micromolar range in human monocytes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher A. W. David ◽  
M. Estela del Castillo Busto ◽  
Susana Cuello-Nuñez ◽  
Heidi Goenaga-Infante ◽  
Michael Barrow ◽  
...  

Abstract Background Safe and rational development of nanomaterials for clinical translation requires the assessment of potential biocompatibility. Autophagy, a critical homeostatic pathway intrinsically linked to cellular health and inflammation, has been shown to be affected by nanomaterials. It is, therefore, important to be able to assess possible interactions of nanomaterials with autophagic processes. Results CEM (T cell), Raji (B lymphocyte), and THP-1 (human monocyte) cell lines were subject to treatment with rapamycin and chloroquine, known to affect the autophagic process, in order to evaluate cell line-specific responses. Flow cytometric quantification of a fluorescent autophagic vacuole stain showed that maximum observable effects (105%, 446%, and 149% of negative controls) were achieved at different exposure durations (8, 6, and 24 h for CEM, Raji, and THP-1, respectively). THP-1 was subsequently utilised as a model to assess the autophagic impact of a small library of nanomaterials. Association was observed between hydrodynamic size and autophagic impact (r2 = 0.11, p = 0.004). An ELISA for p62 confirmed the greatest impact by 10 nm silver nanoparticles, abolishing p62, with 50 nm silica and 180 nm polystyrene also lowering p62 to a significant degree (50%, 74%, and 55%, respectively, p < 0.05). Conclusions This data further supports the potential for a variety of nanomaterials to interfere with autophagic processes which, in turn, may result in altered cellular function and viability. The association of particle size with impact on autophagy now warrants further investigation. Graphic abstract


Blood ◽  
2021 ◽  
Author(s):  
Sanjay Khandelwal ◽  
Ayiesha Barnes ◽  
Lubica Rauova ◽  
Amrita Sarkar ◽  
Ann H Rux ◽  
...  

Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing IgG antibodies to a multivalent antigen composed of platelet factor 4 (PF4) and heparin. The limitations of current anti-thrombotic therapy in HIT supports the need to identify additional pathways that may be targets for therapy. Activation of FcgRIIA by HIT ULICs initiates diverse procoagulant cellular effector functions. HIT ULICs are also known to activate complement, but the contribution of this pathway to the pathogenesis of HIT has not been studied in detail. We observed that HIT ULICs physically interact with C1q in buffer and plasma, activate complement via the classical pathway, promote co-deposition of IgG and activated C3 complement fragments (C3c) on neutrophil and monocyte cell surfaces. Complement activation by ULICs, in turn, facilitates Fcg receptor(R)-independent monocyte tissue factor expression, enhances IgG binding to the cell surface FcgRs and promotes platelet adhesion to injured endothelium. Inhibition of the proximal, but not terminal, steps in the complement pathway, abrogates monocyte tissue factor expression by HIT ULICs. Together, these studies suggest a major role for complement activation in regulating Fc-dependent effector functions of HIT ULICs, identify potential non-anticoagulant targets for therapy, and provide insights into the broader roles of complement in immune complex-mediated thrombotic disorders.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 157
Author(s):  
Jin Yang ◽  
Lizhi Gong ◽  
Miaomiao Guo ◽  
Yu Jiang ◽  
Yi Ding ◽  
...  

Six new prenylated indole diketopiperazine alkaloids, asperthrins A–F (1–6), along with eight known analogues (7–14), were isolated from the marine-derived endophytic fungus Aspergillus sp. YJ191021. Their planar structures and absolute configurations were elucidated by HR-ESI-MS, 1D/2D NMR data, and time-dependent density functional theory (TDDFT)/ECD calculation. The isolated compounds were assayed for their inhibition against three agricultural pathogenic fungi, four fish pathogenic bacteria, and two agricultural pathogenic bacteria. Compound 1 exhibited moderate antifungal and antibacterial activities against Vibrioanguillarum, Xanthomonas oryzae pv. Oryzicola, and Rhizoctoniasolani with minimal inhibitory concentration (MIC) values of 8, 12.5, and 25 μg/mL, respectively. Furthermore, 1 displayed notable anti-inflammatory activity with IC50 value of 1.46 ± 0.21 μM in Propionibacteriumacnes induced human monocyte cell line (THP-1).


Sign in / Sign up

Export Citation Format

Share Document