poly i:c
Recently Published Documents





2022 ◽  
Vol 89 ◽  
pp. 104949
Xue Zhang ◽  
Liang Chen ◽  
Chun Hu ◽  
David Fast ◽  
Lu Zhang ◽  

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Mithun Das ◽  
Monique L. Smith ◽  
Tomomi Furihata ◽  
Subir Sarker ◽  
Ross O’Shea ◽  

Zika virus (ZIKV) is a pathogenic neurotropic virus that infects the central nervous system (CNS) and results in various neurological complications. Astrocytes are the dominant CNS cell producer of the antiviral cytokine IFN-β, however little is known about the factors involved in their ability to mediate viral infection control. Recent studies have displayed differential responses in astrocytes to ZIKV infection, and this study sought to elucidate astrocyte cell-specific responses to ZIKV using a variety of cell models infected with either the African (MR766) or Asian (PRVABC59) ZIKV strains. Expression levels of pro-inflammatory (TNF-α and IL-1β) and inflammatory (IL-8) cytokines following viral infection were low and mostly comparable within the ZIKV-resistant and ZIKV-susceptible astrocyte models, with better control of proinflammatory cytokines displayed in resistant astrocyte cells, synchronising with the viral infection level at specific timepoints. Astrocyte cell lines displaying ZIKV-resistance also demonstrated early upregulation of multiple antiviral genes compared with susceptible astrocytes. Interestingly, pre-stimulation of ZIKV-susceptible astrocytes with either poly(I:C) or poly(dA:dT) showed efficient protection against ZIKV compared with pre-stimulation with either recombinant IFN-β or IFN-λ, perhaps indicating that a more diverse antiviral gene expression is necessary for astrocyte control of ZIKV, and this is driven in part through interferon-independent mechanisms.

2022 ◽  
Vol 12 ◽  
Suthinee Soponpong ◽  
Piti Amparyup ◽  
Taro Kawai ◽  
Anchalee Tassanakajon

Interferon regulatory factors (IRFs) are transcription factors found in both vertebrates and invertebrates that were recently identified and found to play an important role in antiviral immunity in black tiger shrimp Penaeus monodon. In this study, we investigated the mechanism by which P. monodon IRF (PmIRF) regulates the immune-related genes downstream of the cytosolic DNA sensing pathway. Depletion of PmIRF by double-stranded RNA-mediated gene silencing significantly reduced the mRNA expression levels of the IFN-like factors PmVago1, PmVago4, and PmVago5 and antilipopolysaccharide factor 6 (ALFPm6) in shrimp. In human embryonic kidney (HEK293T) cells transfected with PmIRF or co-transfected with DEAD-box polypeptide (PmDDX41) and simulator of IFN genes (PmSTING) expression plasmids, the promoter activity of IFN-β, nuclear factor (NF-κB), and ALFPm6 was synergistically enhanced following stimulation with the nucleic acid mimics deoxyadenylic–deoxythymidylic acid sodium salt [poly(dA:dT)] and high molecular weight (HMW) polyinosinic–polycytidylic acid [poly(I:C)]. Both nucleic acid mimics also significantly induced PmSTING, PmIRF, and ALFPm6 gene expression. Co-immunoprecipitation experiments showed that PmIRF interacted with PmSTING in cells stimulated with poly(dA:dT). PmSTING, PmIRF, and PmDDX41 were localized in the cytoplasm of unstimulated HEK293T cells and PmIRF and PmDDX41 were translocated to the nucleus upon stimulation with the nucleic acid mimics while PmSTING remained in the cytoplasm. These results indicate that PmIRF transduces the pathogen signal via the PmDDX41–PmSTING DNA sensing pathway to induce downstream production of interferon-like molecules and antimicrobial peptides.

2022 ◽  
Vol 19 (1) ◽  
Ryoji Kagoya ◽  
Makiko Toma-Hirano ◽  
Junya Yamagishi ◽  
Naoyuki Matsumoto ◽  
Kenji Kondo ◽  

Abstract Background Postviral olfactory dysfunction (PVOD) following a viral upper respiratory tract infection (URI) is one of the most common causes of olfactory disorders, often lasting for over a year. To date, the molecular pathology of PVOD has not been elucidated. Methods A murine model of Toll-like receptor 3 (TLR3)-mediated upper respiratory tract inflammation was used to investigate the impact of URIs on the olfactory system. Inflammation was induced via the intranasal administration of polyinosinic–polycytidylic acid (poly(I:C), a TLR3 ligand) to the right nostril for 3 days. Peripheral olfactory sensory neurons (OSNs), immune cells in the olfactory mucosa, and glial cells in the olfactory bulb (OB) were analyzed histologically. Proinflammatory cytokines in the nasal tissue and OB were evaluated using the quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Results In the treated mice, OSNs were markedly reduced in the olfactory mucosa, and T cell and neutrophil infiltration therein was observed 1 day after the end of poly(I:C) administration. Moreover, there was a considerable increase in microglial cells and slight increase in activated astrocytes in the OB. In addition, qPCR and ELISA revealed the elevated expression of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and interferon-gamma both in the OB and nasal tissue. Conclusions Taken together, the decreased peripheral OSNs, OB microgliosis, and elevated proinflammatory cytokines suggest that immunological changes in the OB may be involved in the pathogenesis of PVOD.

2022 ◽  
Justin M Saunders ◽  
Carolina Muguruza ◽  
Salvador Sierra ◽  
Jose L Moreno ◽  
Luis F. Callado ◽  

Prenatal environmental insults increase the risk of neurodevelopmental psychiatric conditions in the offspring. Structural modifications of dendritic spines are central to brain development and plasticity. Using maternal immune activation (MIA) as a rodent model of prenatal environmental insult, previous results have reported dendritic structural deficits in the frontal cortex. However, very little is known about the molecular mechanism underlying MIA-induced synaptic structural alterations in the offspring. Using prenatal (E12.5) injection with poly-(I:C) as a mouse MIA model, we show that upregulation of the serotonin 5-HT2A receptor (5-HT2AR) is at least in part responsible for some of the effects of prenatal insults on frontal cortex dendritic spine structure and sensorimotor gating processes. Mechanistically, we report that this upregulation of frontal cortex 5-HT2AR expression is associated with MIA-induced reduction of nuclear translocation of the glucocorticoid receptor (GR) and, consequently, a decrease in the enrichment of GR at the 5-HT2AR promoter. The translational significance of these preclinical findings is supported by data in postmortem human brain samples suggesting dysregulated nuclear GR translocation in frontal cortex of schizophrenia subjects. Repeated (twice a day for 4 days) corticosterone administration augmented frontal cortex 5-HT2AR expression and reduced GR binding to the 5-HT2AR promoter. However, virally (AAV)-mediated augmentation of GR function reduced frontal cortex 5-HT2AR expression and improved sensorimotor gating processes via 5-HT2AR. Together, these data support a negative regulatory relationship between GR signaling and 5-HT2AR expression in mouse frontal cortex that may carry implications for the pathophysiology underlying 5-HT2AR dysregulation in neurodevelopmental psychiatric disorders.

2022 ◽  
Rebecca L. Casazza ◽  
Drake T Philip ◽  
Helen M. Lazear

Interferon lambda (IFN-λ, type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I:C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages.

Hongli Jin ◽  
Yujie Bai ◽  
Jianzhong Wang ◽  
Cui Jiao ◽  
Di Liu ◽  

The emergence of Zika virus (ZIKV) infection, which is unexpectedly associated with congenital defects, has prompted the development of safe and effective vaccines. The gram-positive enhancer matrix-protein anchor (GEM-PA) display system has emerged as a versatile and highly effective platform for delivering target proteins for vaccines. In this article, we developed a bacterium-like particle vaccine ZI-△-PA-GEM based on the GEM-PA system. The fusion protein ZI-△-PA, which contains the prM-E-△ protein of ZIKV (with a stem-transmembrane region deletion) and the protein anchor PA3, was expressed. The fusion protein was successfully displayed on the GEM surface, forming ZI-△-PA-GEM. Moreover, when BALB/c mice were immunized intramuscularly with ZI-△-PA-GEM combined with 201 VG and poly(I:C) adjuvants, durable ZIKV-specific IgG and protective neutralizing antibody responses were induced. Potent B cell/DC activation was also be stimulated early after immunization. Remarkably, splenocyte proliferation, the secretion of multiple cytokines, T/B cell activation and central memory T cell responses were elicited. These data indicate that ZI-△-PA-GEM is a promising bacterium-like particle vaccine candidate for ZIKV.

2022 ◽  
Vol 23 (1) ◽  
pp. 540
Evelyn Kelemen ◽  
Éva Ádám ◽  
Stella Márta Sági ◽  
Anikó Göblös ◽  
Lajos Kemény ◽  

Psoriasis is a multifactorial, chronic inflammatory skin disease, the development of which is affected by both genetic and environmental factors. Cytosolic nucleic acid fragments, recognized as pathogen- and danger-associated molecular patterns, are highly abundant in psoriatic skin. It is known that psoriatic skin exhibits increased levels of IL-23 compared to healthy skin. However, the relationship between free nucleic acid levels and IL-23 expression has not been clarified yet. To examine a molecular mechanism by which nucleic acids potentially modulate IL-23 levels, an in vitro system was developed to investigate the IL-23 mRNA expression of normal human epidermal keratinocytes under psoriasis-like circumstances. This system was established using synthetic nucleic acid analogues (poly(dA:dT) and poly(I:C)). Signaling pathways, receptor involvement and the effect of PRINS, a long non-coding RNA previously identified and characterized by our research group, were analyzed to better understand the regulation of IL-23 in keratinocytes. Our results indicate that free nucleic acids regulate epithelial IL-23 mRNA expression through the TLR3 receptor and specific signaling pathways, thereby, contributing to the development of an inflammatory milieu favorable for the appearance of psoriatic symptoms. A moderate negative correlation was confirmed between the nucleic-acid-induced IL-23 mRNA level and the rate of its decrease upon PRINS overexpression.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Alfredo Resano ◽  
Surjyadipta Bhattacharjee ◽  
Miguel Barajas ◽  
Khanh V. Do ◽  
Roberto Aguado-Jiménez ◽  

To contribute to further understanding the cellular and molecular complexities of inflammatory-immune responses in allergic disorders, we have tested the pro-homeostatic elovanoids (ELV) in human nasal epithelial cells (HNEpC) in culture challenged by several allergens. ELV are novel bioactive lipid mediators synthesized from the omega-3 very-long-chain polyunsaturated fatty acids (VLC-PUFA,n-3). We ask if: (a) several critical signaling events that sustain the integrity of the human nasal epithelium and other organ barriers are perturbed by house dust mites (HDM) and other allergens, and (b) if ELV would participate in beneficially modulating these events. HDM is a prevalent indoor allergen that frequently causes allergic respiratory diseases, including allergic rhinitis and allergic asthma, in HDM-sensitized individuals. Our study used HNEpC as an in vitro model to study the effects of ELV in counteracting HDM sensitization resulting in inflammation, endoplasmic reticulum (ER) stress, autophagy, and senescence. HNEpC were challenged with the following allergy inducers: LPS, poly(I:C), or Dermatophagoides farinae plus Dermatophagoides pteronyssinus extract (HDM) (30 µg/mL), with either phosphate-buffered saline (PBS) (vehicle) or ELVN-34 (500 nM). Results show that ELVN-34 promotes cell viability and reduces cytotoxicity upon HDM sensitization of HNEpC. This lipid mediator remarkably reduces the abundance of pro-inflammatory cytokines and chemokines IL-1β, IL-8, VEGF, IL-6, CXCL1, CCL2, and cell adhesion molecule ICAM1 and restores the levels of the pleiotropic anti-inflammatory IL-10. ELVN-34 also lessens the expression of senescence gene programming as well as of gene transcription engaged in pro-inflammatory responses. Our data also uncovered that HDM triggered the expression of key genes that drive autophagy, unfolded protein response (UPR), and matrix metalloproteinases (MMP). ELVN-34 has been shown to counteract these effects effectively. Together, our data reveal a novel, pro-homeostatic, cell-protective lipid-signaling mechanism in HNEpC as potential therapeutic targets for allergies.

Yunfei Tan ◽  
Yuko Fujita ◽  
Yaoyu Pu ◽  
Lijia Chang ◽  
Youge Qu ◽  

AbstractMaternal immune activation (MIA) plays a role in the etiology of schizophrenia. MIA by prenatal exposure of polyinosinic:polycytidylic acid [poly(I:C)] in rodents caused behavioral and neurobiological changes relevant to schizophrenia in adult offspring. We investigated whether the novel antidepressant (R)-ketamine could prevent the development of psychosis-like phenotypes in adult offspring after MIA. We examined the effects of (R)-ketamine (10 mg/kg/day, twice weekly for 4 weeks) during juvenile and adolescent stages (P28–P56) on the development of cognitive deficits, loss of parvalbumin (PV)-immunoreactivity in the medial prefrontal cortex (mPFC), and decreased dendritic spine density in the mPFC and hippocampus from adult offspring after prenatal poly(I:C) exposure. Furthermore, we examined the role of TrkB in the prophylactic effects of (R)-ketamine. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages significantly blocked the development of cognitive deficits, reduced PV-immunoreactivity in the prelimbic (PrL) of mPFC, and decreased dendritic spine density in the PrL of mPFC, CA3 and dentate gyrus of the hippocampus from adult offspring after prenatal poly(I:C) exposure. Furthermore, pretreatment with ANA-12 (TrkB antagonist: twice weekly for 4 weeks) significantly blocked the beneficial effects of (R)-ketamine on cognitive deficits of adult offspring after prenatal poly(I:C) exposure. These data suggest that repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages could prevent the development of psychosis in adult offspring after MIA. Therefore, (R)-ketamine would be a potential prophylactic drug for young subjects with high-risk for psychosis.

Sign in / Sign up

Export Citation Format

Share Document