One-month repeated cigarette smoke exposure of human organotypic bronchial epithelial cell culture

2018 ◽  
Vol 295 ◽  
pp. S69
Author(s):  
S. Ito ◽  
K. Ishimori ◽  
S. Ishikawa
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ceri E. Stewart ◽  
Elizabeth E. Torr ◽  
Nur H. Mohd Jamili ◽  
Cynthia Bosquillon ◽  
Ian Sayers

The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.


2017 ◽  
Vol 24 (10) ◽  
Author(s):  
Vianca Vianzon ◽  
Beate Illek ◽  
Gregory R. Moe

ABSTRACT Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.


2010 ◽  
Vol 36 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Malcolm Brodlie ◽  
Michael C. McKean ◽  
Gail E. Johnson ◽  
John D. Perry ◽  
Audrey Nicholson ◽  
...  

Author(s):  
Hamed Janbazacyabar ◽  
Marthe van Daal ◽  
Thea Leusink-Muis ◽  
Ingrid van Ark ◽  
Johan Garssen ◽  
...  

Cigarette smoke exposure during pregnancy and lactation is associated with adverse pregnancy outcomes. Here, we investigated the effects of maternal smoke exposure on pregnancy and offspring immunity and explored whether, epidermal growth factor (EGF), an important growth-promoting factor in human colostrum and milk, might be a possible missing link in maternal smoke exposure and changes in infants’ immune responses. Pregnant BALB/c mice were exposed to either cigarette smoke or air during gestation and lactation, and effects on pulmonary inflammation in dams and immune responses in offspring were examined. Maternal smoke exposure increased airway hyperresponsiveness and accumulation of inflammatory cells in the lungs of pregnant dams compared to non-pregnant dams. The E-cadherin protein expression was reduced in mammary glands of cigarette smoke-exposed pregnant dams. EGF levels were higher in mammary glands and serum of smoke-exposed pregnant dams compared to air-exposed pregnant dams. Offspring from cigarette smoke-exposed dams exhibited elevated levels of IL-17A, MCP-1, IL-22, and IL-13 in anti-CD3 stimulated spleen cell culture supernatants. EGF levels were also increased in serum of offspring from smoke-exposed dams. A positive correlation was observed between serum EGF levels and neutrophil numbers in bronchoalveolar lavage fluid of the dams. Interestingly, IL-17A, MCP-1, IL-22, IL13, and IFN-γ levels in anti-CD3 stimulated spleen cell culture supernatants of male pups also showed a positive correlation with EGF serum levels. In summary, our results reveal that maternal smoke exposure predisposes dams to exacerbated airway inflammation and offspring to exacerbated immune responses and both phenomena are associated with elevated EGF concentrations.


Sign in / Sign up

Export Citation Format

Share Document