Evaluation of human health risks associated with toxic metals present in coastal ecosystem: a study on trophic level transfer of metals in Bay of Bengal, India

2018 ◽  
Vol 295 ◽  
pp. S177
Author(s):  
S. Satapathy
2019 ◽  
Vol 27 (3) ◽  
pp. 2677-2690 ◽  
Author(s):  
Shah Jehan ◽  
Seema Anjum Khattak ◽  
Said Muhammad ◽  
Liaqat Ali ◽  
Abdur Rashid ◽  
...  

2021 ◽  
Vol 11 ◽  
pp. e00701
Author(s):  
Niib Konwuruk ◽  
Lawrence Sheringham Borquaye ◽  
Godfred Darko ◽  
Matt Dodd

2019 ◽  
Vol 9 (22) ◽  
Author(s):  
Godfred Darko ◽  
Kwadwo Owusu Boakye ◽  
Marian Asantewaa Nkansah ◽  
Opoku Gyamfi ◽  
Eugene Ansah ◽  
...  

Background. Anthropogenic activities such as artisanal mining pose a major environmental health concern due to the potential for discharge of toxic metals into the environment. Objectives. To determine the distribution and pollution patterns of arsenic (As), iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), copper (Cu) and zinc (Zn) in the topsoil of a mining community in Ghana, along with potential human health risks and in vitro bioaccessibility. Methods. Concentrations of metals were determined using X-ray fluorescence techniques and validated using inductively coupled plasma-mass spectrometry. Results. Concentrations of the metals in topsoil were in the order of magnitude of Cu (31.38 mg/kg) < Ni (45.39 mg/kg) < As (59.66 mg/kg) < Cr (92.87 mg/kg) < Zn (106.98 mg/kg) < Mn (1195.49 mg/kg) < Fe (30061.02 mg/kg). Geo-statistical and multivariate analyses based on hazard indices including contamination, ecological risks, geo-accumulation, and pollution load suggest that the topsoils are contaminated in the study area. The potential ecological risk index (PERI) showed high ecological risk effects (PERI=269.09), whereas the hazard index (1×10−7) and carcinogenic risk index (1×10−5) indicated low human health risks. Elevated levels of As, Cr, Ni, and Zn were found to emanate from anthropogenic origins, whereas Fe, Mn, and Cu levels were attributed mainly to geological and atmospheric depositions. Physicochemical parameters (pH, electrical conductivity and total organic carbon) showed weak positive correlations to the metal concentrations. Elemental bioaccessibility was variable, decreasing in the order of Mn (35± 2.9%) > Cu (29± 2.6%) > Ni (22± 1.3%) > As (9± 0.5%) > Cr (4± 0.6%) > Fe (2± 0.4%). Conclusions. Incorporation of in-vitro bioaccessibility into the risk characterization models resulted in a hazard index of less than 1, implying low human health risks. However, due to accumulation effects of the metals, regular monitoring is required. Competing Interests. The authors declare no competing financial interests.


Sign in / Sign up

Export Citation Format

Share Document