Trimellitic anhydride facilitates transepithelial permeability disrupting tight junctions in sinonasal epithelial cells

Author(s):  
Kazuhiro Ogi ◽  
Sha Liu ◽  
Mahnaz Ramezanpour ◽  
Clare Cooksley ◽  
Shari Javadiyan ◽  
...  
1992 ◽  
Vol 144 (1) ◽  
pp. 36-38 ◽  
Author(s):  
C.R. Murphy ◽  
P.A.W. Rogers ◽  
M.J. Hosie ◽  
J. Leeton ◽  
L. Beaton

Fitoterapia ◽  
2009 ◽  
Vol 80 (4) ◽  
pp. 241-248 ◽  
Author(s):  
Lili Gu ◽  
Ning Li ◽  
Qiurong Li ◽  
Qiang Zhang ◽  
Chengyang Wang ◽  
...  

2018 ◽  
Vol 26 (9) ◽  
pp. 1181-1192 ◽  
Author(s):  
Fabian Horné ◽  
Raimund Dietze ◽  
Eniko Berkes ◽  
Frank Oehmke ◽  
Hans-Rudolf Tinneberg ◽  
...  

Claudins are the major components of tight junctions and are often deregulated in human cancer, permitting escape of cancer cells along with the acquisition of invasive properties. Similarly, endometrial cells also show invasive capabilities; however, the role of tight junctions in endometriosis has only rarely been examined. In this study, we analyzed the protein expression and localization of claudin-7 and claudin-11 in human eutopic and ectopic endometrium and endometrial cell lines. We identified claudin-7 primarily at the basolateral junctions of the glandular epithelial cells in eutopic endometrium as well as in the ectopic lesions in nearly all glands and cysts. Quantification of claudin-7 localization by HSCORE showed a slight increase in peritoneal and deep infiltrating endometriosis (DIE) compared to eutopic endometrium. In contrast, claudin-11 was localized mainly in the apicolateral junctions in nearly all glandular epithelial cells of the eutopic endometrium. Interestingly, we observed a deregulation of claudin-11 localization to a basal or basolateral localization in ovarian ( P < .001), peritoneal ( P < .01), and DIE ( P < .05) and a moderately decreased abundance in ovarian endometriosis. In endometrial cell lines, claudin-7 was only present in epithelial Ishikawa cells, and silencing by small-interfering RNA increased cell invasiveness. In contrast, claudin-11 could be demonstrated in Ishikawa and endometriotic 12Z and 49Z cells. Silencing of claudin-11 decreased invasiveness of 12Z slightly but significantly in 49Z. We suggest that although claudin-7 and claudin-11 can be found in nearly all eutopic and ectopic epithelial cells, the impaired localization of claudin-11 in ectopic endometrium might contribute to the pathogenesis of endometriosis.


2021 ◽  
Author(s):  
Saranyaraajan Varadarajan ◽  
Rachel E. Stephenson ◽  
Eileen R. Misterovich ◽  
Jessica L. Wu ◽  
Ivan S. Erofeev ◽  
...  

Epithelia maintain an effective barrier by remodeling cell-cell junctions in response to mechanical stimuli. Cells often respond to mechanical stress through activating RhoA and remodeling actomyosin. Previously, we found that local leaks in the barrier are rapidly repaired by localized, transient activation of RhoA – ″Rho flares″ – but how Rho flares are initiated remains unknown. Here, we discovered that intracellular calcium flashes occur in Xenopus laevis epithelial cells undergoing Rho flare-mediated remodeling of tight junctions. Calcium flashes originate at the site of barrier leaks and propagate into the cell. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSC) reduced the amplitude of calcium flashes and diminished the activation of Rho flares. Furthermore, MSC-dependent calcium influx was necessary to maintain global barrier function by regulating local repair of tight junctions through efficient junction contraction. We propose that MSC-dependent calcium flashes are an important mechanism allowing epithelial cells to sense and respond to local leaks induced by mechanical stimuli.


2002 ◽  
Vol 7 (10) ◽  
pp. 1059-1072 ◽  
Author(s):  
Atsunori Fukuhara ◽  
Kenji Irie ◽  
Akio Yamada ◽  
Tatsuo Katata ◽  
Tomoyuki Honda ◽  
...  

1997 ◽  
Vol 110 (8) ◽  
pp. 1005-1012 ◽  
Author(s):  
C.S. Merzdorf ◽  
D.A. Goodenough

The tight junction is the most apical member of the intercellular junctional complex. It functions as a permeability barrier between epithelial cells and maintains the integrity of the apical and basolateral membrane domains. In order to study tight junctions in Xenopus laevis, a polyclonal antibody was raised which recognized Xenopus ZO-1. Monoclonal antibody 19B1 (mAb 19B1) was generated in rats using a crude membrane preparation from Xenopus lung as antigen. mAb 19B1 gave immunofluorescent staining patterns identical to those seen with anti-ZO-1 on monolayers of Xenopus A6 kidney epithelial cells and on frozen sections of Xenopus kidney, liver, and embryos. Electron microscopy showed that the 19B1 antigen colocalized with ZO-1 at the tight junction. Western blotting and immunoprecipitation demonstrated that ZO-1 is an approximately 220 kDa protein in Xenopus, while mAb 19B1 identified an approximately 210 kDa antigen on immunoblots. Immunoprecipitates of ZO-1 were not recognized by mAb 19B1 by western analysis. The solubility properties of the 19B1 antigen suggested that it is a peripheral membrane protein. Thus, the antigen recognized by the new monoclonal antibody 19B1 is not ZO-1 and represents a different Xenopus tight junction associated protein.


Sign in / Sign up

Export Citation Format

Share Document