In Vitro and In Vivo (Rabbit, Guinea Pig, Mouse) Properties of a Novel Resorbable Polymer and Allogenic Bone Composite for Guided Bone Regeneration and Orthopedic Implants

2018 ◽  
Vol 50 (7) ◽  
pp. 2223-2228 ◽  
Author(s):  
G. Gut ◽  
M. Ambroziak ◽  
W. Bojar ◽  
B. Szaraniec ◽  
J. Chłopek ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Manuel Toledano ◽  
Marta Vallecillo-Rivas ◽  
María T. Osorio ◽  
Esther Muñoz-Soto ◽  
Manuel Toledano-Osorio ◽  
...  

Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.


2011 ◽  
Vol 22 (1-3) ◽  
pp. 263-275 ◽  
Author(s):  
Jidong Li ◽  
Yi Man ◽  
Yi Zuo ◽  
Li Zhang ◽  
Cui Huang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1186
Author(s):  
Lívia da Costa Pereira ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
Adriana Terezinha Neves Novellino Alves ◽  
Rodrigo Figueiredo de Brito Resende ◽  
Marcelo José Pinheiro Guedes de Uzeda ◽  
...  

This study’s aim was to evaluate the biocompatibility and bioabsorption of a new membrane for guided bone regeneration (polylactic-co-glycolic acid associated with hydroxyapatite and β-tricalcium phosphate) with three thicknesses (200, 500, and 700 µm) implanted in mice subcutaneously. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and the quantification of carbon, hydrogen and nitrogen were used to characterize the physico-chemical properties. One hundred Balb-C mice were divided into 5 experimental groups: Group 1—Sham (without implantation); Group 2—200 μm; Group 3—500 μm; Group 4—700 μm; and Group 5—Pratix®. Each group was subdivided into four experimental periods (7, 30, 60 and 90 days). Samples were collected and processed for histological and histomorphometrical evaluation. The membranes showed no moderate or severe tissue reactions during the experimental periods studied. The 500-μm membrane showed no tissue reaction during any experimental period. The 200-μm membrane began to exhibit fragmentation after 30 days, while the 500-μm and 700-µm membranes began fragmentation at 90 days. All membranes studied were biocompatible and the 500 µm membrane showed the best results for absorption and tissue reaction, indicating its potential for clinical guided bone regeneration.


Materials ◽  
2016 ◽  
Vol 9 (11) ◽  
pp. 949 ◽  
Author(s):  
Eisner Salamanca ◽  
Chi-Yang Tsai ◽  
Yu-Hwa Pan ◽  
Yu-Te Lin ◽  
Haw-Ming Huang ◽  
...  

2001 ◽  
Vol 12 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Luiz A. Salata ◽  
Paul V. Hatton ◽  
A. Jane Devlin ◽  
Geoffrey T. Craig ◽  
Ian M. Brook

2020 ◽  
Vol 15 (1) ◽  
pp. 015013
Author(s):  
Jing He ◽  
Zhenning Li ◽  
Tianhao Yu ◽  
Weizuo Wang ◽  
Meihan Tao ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 93 ◽  
Author(s):  
Eisner Salamanca ◽  
Chia Chen Hsu ◽  
Wan Ling Yao ◽  
Cheuk Sing Choy ◽  
Yu Hwa Pan ◽  
...  

Due to autogenous bone limitations, some substitute bone grafts were developed. Collagenated porcine graft (CPG) is able to regenerate new bone, although the number of studies is insufficient, highlighting the need for future studies to better understand the biomaterial. In order to understand better CPG′s possible dental guided bone regeneration indications, the aim of this work was to determine CPG′s biological capacity to induce osteoblast differentiation in vitro and guided bone regeneration in vivo, whilst being compared with commercial hydroxyapatite and beta tricalcium phosphate (HA/β-TCP) and porcine graft alone. Cell cytotoxicity (WST-1), alkaline phosphatase activity (ALP), and real-time polymerase chain reaction (qPCR) were assessed in vitro. Critical size defects of New Zealand white rabbits were used for the in vivo part, with critical size defect closures and histological analyses. WST-1 and ALP indicated that CPG directly stimulated a greater proliferation and confluency of cells with osteoblastic differentiation in vitro. Gene sequencing indicated stable bone formation markers, decreased resorption makers, and bone remodeling coupling factors, making the transition from osteoclast to osteoblast expression at the end of seven days. CPG resulted in the highest new bone regeneration by osteoconduction in critical size defects of rabbit calvaria at eight weeks. Nonetheless, all biomaterials achieved nearly complete calvaria defect closure. CPG was found to be osteoconductive, like porcine graft and HA/β-TCP, but with higher new bone formation in critical size defects of rabbit calvaria at eight weeks. CPG can be used for different dental guided bone regeneration procedures; however, further studies are necessary.


2013 ◽  
Vol 49 (4) ◽  
pp. 499-507 ◽  
Author(s):  
M. Bai ◽  
T. Zhang ◽  
T. Ling ◽  
Z. Zhou ◽  
H. Xie ◽  
...  

Author(s):  
Yusuke Sakaguchi ◽  
Kyohei Toyonaga ◽  
Yuuhiro Sakai ◽  
Emiko Arima ◽  
Shinichi Kato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document