Data-driven road side unit location optimization for connected-autonomous-vehicle-based intersection control

2021 ◽  
Vol 128 ◽  
pp. 103169
Author(s):  
Yunyi Liang ◽  
Shen Zhang ◽  
Yinhai Wang
2021 ◽  
Vol 13 (15) ◽  
pp. 8281
Author(s):  
Andreas Keler ◽  
Patrick Malcolm ◽  
Georgios Grigoropoulos ◽  
Seyed Abdollah Hosseini ◽  
Heather Kaths ◽  
...  

Detailed specifications of urban traffic from different perspectives and scales are crucial for understanding and predicting traffic situations from the view of an autonomous vehicle (AV). We suggest a data-driven specification scheme for maneuvers at different design elements of the built infrastructure and focus on urban roundabouts in Germany. Based on real observations, we define classes of maneuvers, interactions and driving strategies for cyclists, pedestrians and motorized vehicles and define a matrix for merging different maneuvers, resulting in more complex interactions. The sequences of these interactions, which partially consist of explicit communications, are extracted from real observations and adapted into microscopic traffic flow simulations. The simulated maneuver sequences are then visualized in 3D environments and experienced by bicycle simulator test subjects. Using trajectory segments (in fictional space) from two conducted simulator studies, we relate the recorded movement patterns of test subjects with observed cyclists in reality.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2534 ◽  
Author(s):  
YiNa Jeong ◽  
SuRak Son ◽  
ByungKwan Lee

This paper proposes the lightweight autonomous vehicle self-diagnosis (LAVS) using machine learning based on sensors and the internet of things (IoT) gateway. It collects sensor data from in-vehicle sensors and changes the sensor data to sensor messages as it passes through protocol buses. The changed messages are divided into header information, sensor messages, and payloads and they are stored in an address table, a message queue, and a data collection table separately. In sequence, the sensor messages are converted to the message type of the other protocol and the payloads are transferred to an in-vehicle diagnosis module (In-VDM). The LAVS informs the diagnosis result of Cloud or road side unit(RSU) by the internet of vehicles (IoV) and of drivers by Bluetooth. To design the LAVS, the following two modules are needed. First, a multi-protocol integrated gateway module (MIGM) converts sensor messages for communication between two different protocols, transfers the extracted payloads to the In-VDM, and performs IoV to transfer the diagnosis result and payloads to the Cloud through wireless access in vehicular environment(WAVE). Second, the In-VDM uses random forest to diagnose parts of the vehicle, and delivers the results of the random forest as an input to the neural network to diagnose the total condition of the vehicle. Since the In-VDM uses them for self-diagnosis, it can diagnose a vehicle with efficiency. In addition, because the LAVS converts payloads to a WAVE message and uses IoV to transfer the WAVE messages to RSU or the Cloud, it prevents accidents in advance by informing the vehicle condition of drivers rapidly.


2019 ◽  
Vol 65 (4) ◽  
pp. 1-9
Author(s):  
Milan Zlatkovic ◽  
Andalib Shams

As traffic congestion increases day by day, it becomes necessary to improve the existing roadway facilities to maintain satisfactory operational and safety performances. New vehicle technologies, such as Connected and Autonomous Vehicles (CAV) have a potential to significantly improve transportation systems. Using the advantages of CAVs, this study developed signalized intersection control strategy algorithm that optimizes the operations of CAVs and allows signal priority for connected platoons. The algorithm was tested in VISSIM microsimulation using a real-world urban corridor. The tested scenarios include a 2040 Do-Nothing scenario, and CAV alternatives with 25%, 50%, 75% and 100% CAV penetration rate. The results show a significant reduction in intersection delays (26% - 38%) and travel times (6% - 20%), depending on the penetration rate, as well as significant improvements on the network-wide level. CAV penetration rates of 50% or more have a potential to significantly improve all operational measures of effectiveness.


2020 ◽  
Vol 17 (1) ◽  
pp. 41-63 ◽  
Author(s):  
Nenad Petrovic ◽  
Djordje Kocic

Energy management is one of the greatest challenges in smart cities. Moreover, the presence of autonomous vehicles makes this task even more complex. In this paper, we propose a data-driven smart grid framework which aims to make smart cities energy-efficient focusing on two aspects: energy trading and autonomous vehicle charging. The framework leverages deep learning, linear optimization, semantic technology, domain-specific modelling notation, simulation and elements of relay protection. The evaluation of deep learning module together with code generation time and energy distribution cost reduction performed within the simulation environment also presented in this paper are given. According to the results, the achieved energy distribution cost reduction varies and depends from case to case.


Sign in / Sign up

Export Citation Format

Share Document