scholarly journals Public charging infrastructure and the market diffusion of electric vehicles

2020 ◽  
Vol 86 ◽  
pp. 102413
Author(s):  
Ulrike Illmann ◽  
Jan Kluge
2018 ◽  
Vol 9 (2) ◽  
pp. 21 ◽  
Author(s):  
Julia Michaelis ◽  
Till Gnann ◽  
Anna-Lena Klingler

Plug-in electric vehicles are the currently favoured option to decarbonize the passenger car sector. However, a decarbonisation is only possible with electricity from renewable energies and plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both of these issues could be solved with coordinated load shifting (demand response). Previous studies analysed this research question by focusing on private vehicles with domestic and work charging infrastructure. This study additionally includes the important early adopter group of commercial fleet vehicles and reflects the impact of domestic, commercial, work, and public charging. For this purpose, two models are combined that capture the market diffusion of electric vehicles and their charging behaviour (ALADIN), as well as the load shifting potential of several new energy technologies (eLOAD). In a comparison of three different scenarios, we find that the charging of commercial vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of private cars does. Also, for private cars, charging at work occurs during the day and may reduce the necessity of load shifting while public charging plays a less important role in total charging demand as well as load shifting potential. Nonetheless, demand response reduces the system load by about 2.2 GW or 2.8% when domestic and work charging are considered when compared to a scenario with only domestic charging where a new peak might be created in the winter hours due to load shifting into the night.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 539
Author(s):  
Maria Taljegard ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
Filip Johnsson

This study describes, applies, and compares three different approaches to integrate electric vehicles (EVs) in a cost-minimising electricity system investment model and a dispatch model. The approaches include both an aggregated vehicle representation and individual driving profiles of passenger EVs. The driving patterns of 426 randomly selected vehicles in Sweden were recorded between 30 and 73 days each and used as input to the electricity system model for the individual driving profiles. The main conclusion is that an aggregated vehicle representation gives similar results as when including individual driving profiles for most scenarios modelled. However, this study also concludes that it is important to represent the heterogeneity of individual driving profiles in electricity system optimisation models when: (i) charging infrastructure is limited to only the home location in regions with a high share of solar and wind power in the electricity system, and (ii) when addressing special research issues such as impact of vehicle-to-grid (V2G) on battery health status. An aggregated vehicle representation will, if the charging infrastructure is limited to only home location, over-estimate the V2G potential resulting in a higher share (up to 10 percentage points) of variable renewable electricity generation and an under-estimation of investments in both short- and long-term storage technologies.


2020 ◽  
Author(s):  
Vinay Gupta ◽  
Himanshu Priyadarshi ◽  
Vishnu Goyal ◽  
Kulwant Singh ◽  
Ashish Shrivastava ◽  
...  

2021 ◽  
Vol 143 ◽  
pp. 110913
Author(s):  
Ömer Gönül ◽  
A. Can Duman ◽  
Önder Güler

Sign in / Sign up

Export Citation Format

Share Document