Driving next to automated vehicle platoons: How do short time headways influence non-platoon drivers’ longitudinal control?

Author(s):  
Magali Gouy ◽  
Katharina Wiedemann ◽  
Alan Stevens ◽  
Gary Brunett ◽  
Nick Reed
1999 ◽  
Author(s):  
Adam S. Howell ◽  
J. Karl Hedrick

Abstract This paper addresses the problem of detecting multiple faults for the longitudinal control system of an automated vehicle. An existing fault diagnostic system which can isolate all single faults is extended to the diagnosis of multiple faults via improved residual processing in the form of fuzzy logic. The new diagnostic system is shown to correctly detect and isolate all single and multiple faults in a subset of the automated vehicle control system components.


1976 ◽  
Vol 98 (3) ◽  
pp. 239-244 ◽  
Author(s):  
R. J. Rouse ◽  
L. L. Hoberock

This work presents a dynamical analysis of platooned following-law vehicles under longitudinal control proposed in [1]. It is shown that controller gains selected for normal operation give inadequate performance in emergency operation. Dangerous spacing in platoons moving at lower than design speed and delayed target velocity update effects are investigated. Stability of the vehicle system in emergency operation is related to controller gains, and simulations for various emergency contingencies are presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Liuhui Zhao ◽  
Joyoung Lee ◽  
Steven Chien ◽  
Cheol Oh

A shockwave-based speed harmonization algorithm for the longitudinal movement of automated vehicles is presented in this paper. In the advent of Connected/Automated Vehicle (C/AV) environment, the proposed algorithm can be applied to capture instantaneous shockwaves constructed from vehicular speed profiles shared by individual equipped vehicles. With a continuous wavelet transform (CWT) method, the algorithm detects abnormal speed drops in real-time and optimizes speed to prevent the shockwave propagating to the upstream traffic. A traffic simulation model is calibrated to evaluate the applicability and efficiency of the proposed algorithm. Based on 100% C/AV market penetration, the simulation results show that the CWT-based algorithm accurately detects abnormal speed drops. With the improved accuracy of abnormal speed drop detection, the simulation results also demonstrate that the congestion can be mitigated by reducing travel time and delay up to approximately 9% and 18%, respectively. It is also found that the shockwave caused by nonrecurrent congestion is quickly dissipated even with low market penetration.


Sign in / Sign up

Export Citation Format

Share Document