Effect of surface roughness on the couple-stress squeeze film between a sphere and a flat plate

2005 ◽  
Vol 38 (5) ◽  
pp. 451-458 ◽  
Author(s):  
N.B. Naduvinamani ◽  
P.S. Hiremath ◽  
G. Gurubasavaraj
2006 ◽  
Vol 58 (4) ◽  
pp. 176-186 ◽  
Author(s):  
N.M. Bujurke ◽  
N.B. Naduvinamani ◽  
Syeda Tasneem Fathima ◽  
S.S. Benchalli

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Dhanapal P. Basti

The combined effects of couple stresses and surface roughness patterns on the squeeze film characteristics of curved annular plates are studied. The Stokes (1966) couple stress fluid model is included to account for the couple stresses arising due to the presence of microstructure additives in the lubricant. In the context of Christensen's (1969) stochastic theory for the lubrication of rough surfaces, two types of one-dimensional roughness patterns (circumferential and radial) are considered. The governing modified stochastic Reynolds type equations are derived for these roughness patterns. Expressions for the mean squeeze film characteristics are obtained. Numerical computations of the results show that the circumferential roughness pattern on the curved annular plate results in more pressure buildup whereas performance of the squeeze film suffers due to the radial roughness pattern for both concave and convex pads. Further the squeeze film time is longer (shorter) for the circumferential (radial) roughness patterns. Improved squeeze film characteristics are predicted for the couple stress lubricant.


2016 ◽  
Vol 33 (2) ◽  
Author(s):  
Santhana Krishnan Narayanan ◽  
A Chamkha ◽  
Sundarammal Kesavan

Purpose The purpose of this work is to carry our a study of the effect of surface roughness on squeeze film behavior between two transversely circular stepped plates with couple stress lubricant when the upper circular stepped plate has porous facing which approaches the lower plate with uniform velocity. Design/methodology/approach The modified Stochastic Reynolds equation is derived for Christensen Stochastic theory for the rough surfaces. Closed form solution of the Stochastic Reynolds equation is obtained in terms of Fourier-Bessel series. Findings It is found that the effect of couple stress fluid and surface roughness is more pronounced compared to classical case. Originality/value The problem is original that it consider a couple stress fluid in this type of applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
G. M. Deheri ◽  
Sejal J. Patel

This investigation analyzes the performance of a magnetic fluid based squeeze film for a sphere in a rough spherical seat with slip velocity. The slip model of Beavers and Joseph has been deployed to study the effect of velocity slip while the stochastic model of Christensen and Tonder has been used to calculate the effect of surface roughness. The concerned statistically averaged Reynolds’ type equation is solved to derive the pressure distribution which results in the calculation of load carrying capacity. The results presented in graphical forms confirm that the adverse effect of slip velocity can be overcome to a large extent at least in the case of negatively skewed roughness. However, lower values of slip may be preferred for enhancing the performance characteristics of the bearing system. Besides, variance (−ve) provides a little support to improve the performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document