scholarly journals Heterogeneous Multiscale Methods for modelling surface topography in Elastohydrodynamic Lubrication line contacts

2017 ◽  
Vol 113 ◽  
pp. 262-278 ◽  
Author(s):  
G.N. de Boer ◽  
L. Gao ◽  
R.W. Hewson ◽  
H.M. Thompson
Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tao He ◽  
Jiaxu Wang ◽  
Zhanjiang Wang ◽  
Dong Zhu

Line contact is common in many machine components, such as various gears, roller and needle bearings, and cams and followers. Traditionally, line contact is modeled as a two-dimensional (2D) problem when the surfaces are assumed to be smooth or treated stochastically. In reality, however, surface roughness is usually three-dimensional (3D) in nature, so that a 3D model is needed when analyzing contact and lubrication deterministically. Moreover, contact length is often finite, and realistic geometry may possibly include a crowning in the axial direction and round corners or chamfers at two ends. In the present study, plasto-elastohydrodynamic lubrication (PEHL) simulations for line contacts of both infinite and finite length have been conducted, taking into account the effects of surface roughness and possible plastic deformation, with a 3D model that is needed when taking into account the realistic contact geometry and the 3D surface topography. With this newly developed PEHL model, numerical cases are analyzed in order to reveal the PEHL characteristics in different types of line contact.


1983 ◽  
Vol 105 (4) ◽  
pp. 598-604 ◽  
Author(s):  
A. Mostofi ◽  
R. Gohar

In this paper, a numerical solution to the elastohydrodynamic lubrication (EHL) problem is presented for a cylindrical roller with axially profiled ends, rolling over a flat plane. Convergence was obtained for moderate load and material parameters (glass, steel, and a mineral oil). Isobars, contours, and section graphs, show pressure variation and film shape. Predictions of film thickness compare favorably with experiments which use the optical interference method, as well as with other theoretical results for an infinite line contact, or an ellipse having a long slender aspect ratio. The maximum EHL pressure occurs near the start of the profiling and can exceed pressure concentrations there predicted by elastostatic theory.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Punit Kumar ◽  
M. M. Khonsari

This paper investigates the traction behavior in heavily loaded thermo-elastohydrodynamic lubrication (EHL) line contacts using the Doolittle free-volume equation, which closely represents the experimental viscosity-pressure-temperature relationship and has recently gained attention in the field of EHL, along with Tait’s equation of state for compressibility. The well-established Carreau viscosity model has been used to describe the simple shear-thinning encountered in EHL. The simulation results have been used to develop an approximate equation for traction coefficient as a function of operating conditions and material properties. This equation successfully captures the decreasing trend with increasing slide to roll ratio caused by the thermal effect. The traction-slip characteristics are expected to be influenced by the limiting shear stress and pressure dependence of lubricant thermal conductivity, which need to be incorporated in the future.


Sign in / Sign up

Export Citation Format

Share Document