Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications

2017 ◽  
Vol 110 ◽  
pp. 23-34 ◽  
Author(s):  
Bernardo Tormos ◽  
Leonardo Ramírez ◽  
Jens Johansson ◽  
Marcus Björling ◽  
Roland Larsson
2016 ◽  
Vol 94 ◽  
pp. 240-248 ◽  
Author(s):  
Vicente Macián ◽  
Bernardo Tormos ◽  
Santiago Ruiz ◽  
Guillermo Miró
Keyword(s):  

2013 ◽  
Vol 6 (2) ◽  
pp. 311-319 ◽  
Author(s):  
Phil Carden ◽  
Carl Pisani ◽  
Jon Andersson ◽  
Ian Field ◽  
Emmanuel Lainé ◽  
...  

Author(s):  
Kevin Laboe ◽  
Marcello Canova

Up to 65% of the energy produced in an internal combustion engine is dissipated to the engine cooling circuit and exhaust gases [1]. Therefore, recovering a portion of this heat energy is a highly effective solution to improve engine and drivetrain efficiency and to reduce CO2 emissions, with existing vehicle and powertrain technologies [2,3]. This paper details a practical approach to the utilization of powertrain waste heat for light vehicle engines to reduce fuel consumption. The “Systems Approach” as described in this paper recovers useful energy from what would otherwise be heat energy wasted into the environment, and effectively distributes this energy to the transmission and engine oils thus reducing the oil viscosities. The focus is on how to effectively distribute the available powertrain heat energy to optimize drivetrain efficiency for light duty vehicles, minimizing fuel consumption during various drive cycles. To accomplish this, it is necessary to identify the available powertrain heat energy during any drive cycle and cold start conditions, and to distribute this energy in such a way to maximize the overall efficiency of the drivetrain.


Author(s):  
Mirko Baratta ◽  
Roberto Finesso ◽  
Daniela Misul ◽  
Ezio Spessa ◽  
Yifei Tong ◽  
...  

The environmental concerns officially aroused in 1970s made the control of the engine emissions a major issue for the automotive industry. The corresponding reduction in fuel consumption has become a challenge so as to meet the current and future emission legislations. Given the increasing interest retained by the optimal use of a Variable Valve Actuation (VVA) technology, the present paper investigates into the potentials of combining the VVA solution to CNG fuelling. Experiments and simulations were carried out on a heavy duty 6-cylinders CNG engine equipped with a turbocharger displaying a twin-entry waste-gate-controlled turbine. The analysis aimed at exploring the potentials of the Early Intake Valve Closure (EIVC) mode and to identify advanced solutions for the combustion management as well as for the turbo-matching. The engine model was developed within the GT-Power environment and was finely tuned to reproduce the experimental readings under steady state operations. The 0D-1D model was hence run to reproduce the engine operating conditions at different speeds and loads and to highlight the effect of the VVA on the engine performance as well as on the fuel consumption and engine emissions. Pumping losses proved to reduce to a great extent, thus decreasing the brake specific fuel consumption (BSFC) with respect to the throttled engine. The exhaust temperature at the turbine inlet was kept to an almost constant value and minor variations were allowed. This was meant to avoid an excessive worsening in the TWC working conditions, as well as deterioration in the turbocharger performance during load transients. The numerical results also proved that full load torque increases can be achieved by reducing the spark advance so that a higher enthalpy is delivered to the turbocharger. Similar torque levels were also obtained by means of Early Intake Valve Closing strategy. For the latter case, negligible penalties in the fuel consumption were detected. Moreover, for a given combustion phasing, the IVC angle directly controls the mass-flow rate and thus the torque. On the other hand, a slight dependence on the combustion phasing can be detected at part load. Finally, the simulations assessed for almost constant fuel consumption for a wide range of IVC and SA values. Specific attention was also paid to the turbocharger group functioning and to its correct matching to the engine working point. The simulations showed that the working point on the compressor map can be optimized by properly setting the spark advance (SA) as referred to the adopted intake-valve closing angle. It is anyhow worth observing that the engine high loads set a constraint deriving from the need to meet the limits on the peak firing pressure (PFP), thus limiting the possibility to optimize the working point once the turbo-matching is defined.


Sign in / Sign up

Export Citation Format

Share Document