Frictional behaviors of diamond-like carbon films under water lubrication: A molecular dynamics study

2021 ◽  
Vol 153 ◽  
pp. 106609
Author(s):  
Huan Chen ◽  
Guangan Zhang ◽  
Zhibin Lu ◽  
Lichun Bai
Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4925
Author(s):  
Ngoc-Tu Do ◽  
Van-Hai Dinh ◽  
Le Van Lich ◽  
Hong-Hue Dang-Thi ◽  
Trong-Giang Nguyen

With the recent significant advances in micro- and nanoscale fabrication techniques, deposition of diamond-like carbon films on stainless steel substrates has been experimentally achieved. However, the underlying mechanism for the formation of film microstructures has remained elusive. In this study, the growth processes of diamond-like carbon films on AISI 316L substrate are studied via the molecular dynamics method. Effects of substrate bias voltage on the structure properties and sp3 hybridization ratio are investigated. A diamond-like carbon film with a compact structure and smooth surface is obtained at 120 V bias voltage. Looser structures with high surface roughness are observed in films deposited under bias voltages of 0 V or 300 V. In addition, sp3 fraction increases with increasing substrate bias voltage from 0 V to 120 V, while an opposite trend is obtained when the bias voltage is further increased from 120 V to 300 V. The highest magnitude of sp3 fraction was about 48.5% at 120 V bias voltage. The dependence of sp3 fraction in carbon films on the substrate bias voltage achieves a high consistency within the experiment results. The mechanism for the dependence of diamond-like carbon structures on the substrate bias voltage is discussed as well.


Sign in / Sign up

Export Citation Format

Share Document