friction process
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 65)

H-INDEX

11
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 180
Author(s):  
Nikolay M. Rusin ◽  
Alexander L. Skorentsev ◽  
Maksim G. Krinitcyn ◽  
Andrey I. Dmitriev

The disadvantage of antifriction Al–Sn alloys with high tin content is their low bearing capacity. To improve this property, the aluminum matrix of the alloys was alloyed with zinc. The powder of Al–10Zn alloy was blended with the powder of pure tin in the proportion of 40/60 (wt.%). The resulting mixture of the powders was compacted in briquettes and sintered in a vacuum furnace. The sintered briquettes were subjected to subsequent pressing in the closed press mold at an elevated temperature. After this processing, the yield strength of the sintered (Al–10Zn)–40Sn composite was 1.6 times higher than that of the two-phase Al–40Sn one. The tribological tests of the composites were carried out according to the pin-on-disk scheme without lubrication at pressures of 1–5 MPa. It was established that the (Al–10Zn)–40Sn composite has higher wear resistance compared with the Al–40Sn one. However, this advantage becomes insignificant with an increase in the pressure. It was found that the main wear mechanism of the investigated composites under the dry friction process is a delamination of their highly deformed matrix grains.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhu Weixin ◽  
Kong Dejun

Abstract NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coatings were analyzed using ultra-depth-of-field microscopy (UDFM) and X-ray diffraction (XRD), respectively. A ball-on-disk wear test was used to analyze the friction-wear performance of the substrate and the NiMo-TiC coatings under grease-lubrication condition. The results show that the grain shape of NiMo-TiC coatings is dendritic. The wear resistance of NiMo-TiC coatings is improved by the addition of TiC, and the depths of the worn tracks on the substrate and on the NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings are 4.183 μm, 2.164 μm, 1.882 μm, and 1.246 μm, respectively, and the corresponding wear rates are 72.25 μm3/s/N, 32.00 μm3/s/N, 18.10 μm3/s/N, and 7.99 μm3/s/N, respectively; this shows that the NiMo-25%TiC coating has the highest wear resistance among the three kinds of coatings. The wear mechanism of NiMo-TiC coatings is abrasive wear, and the addition of TiC plays a role in resisting wear during the friction process.


2021 ◽  
Author(s):  
Zhengchao Xi ◽  
Jianbo Sun ◽  
Lei Chen ◽  
Haixia Cui ◽  
Yanjun Ma ◽  
...  

Abstract Natural serpentine powders were incorporated into phosphate bonded solid coatings to promote the anti-wear performance of the phosphate coatings. Optimal mass percent of natural serpentine in phosphate coatings was firstly explored. Thereafter, in order to stimulate layer slip of natural serpentine and strengthen interfacial interaction between natural serpentine and counterface during the friction process, tribological performance of the composite coatings under different friction condition was properly investigated. The experimental result indicated that the optimal incorporation of natural serpentine in phosphate coatings was 10 wt.%, through which anti-wear performance of phosphate coatings was significantly elevated. Additionally, accompanied by the increase of applied load and sliding speed, natural serpentine was activated by friction force and local friction heat, and simultaneously interfacial interactions between naturals serpentine and counterface were intensified. As a result, a continuous protective tribo-film was in-situ formed on the counterface, through which anti-wear performance of phosphate coatings were significantly promoted. At the same time, serious furrows generated on the counterface were also effectively self-repaired during the friction process, and further abrasion on the counterface was greatly restrained.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7466
Author(s):  
Rui Zhang ◽  
Wei Feng ◽  
Fuyan Liu

Ti3SiC2/CaF2 composites were prepared by the spark plasma sintering (SPS) process. Both the microstructure of Ti3SiC2/CaF2 and the influence of test temperature on the tribological behavior of the Ti3SiC2/CaF2composites were investigated. The synergistic effect of friction and oxidation was evaluated by analyzing the worn surface morphology. The results showed that Ti3SiC2/CaF2 were still brittle materials after adding CaF2, which was in agreement with Ti3SiC2. The hardness, relative density, flexural strength and compressive strength of the Ti3SiC2/CaF2 composites were slightly lower than those of Ti3SiC2, and the addition of CaF2 decreased the decomposition temperature of Ti3SiC2 from 1350 to 1300 °C. Simultaneously, as the temperature of the test increased, the friction coefficient of Ti3SiC2/CaF2 showed a downward trend (from 0.81 to 0.34), and its the wear rate was insensitive.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7318
Author(s):  
Anita Ptak ◽  
Paula Taciak ◽  
Wojciech Wieleba

This article concerns the tribological properties of three selected polymer materials: polyamide PA6, polyethylene PE-HD and polyetheretherketone composite PEEK/BG during sliding against aluminium alloy EN AW-2017A in the presence of hydraulic oil HLP 68. The tests were carried out under contact pressure p of 3.5–11 MPa at ambient temperature T ranging from −20 °C to +20 °C. The dependence of kinetic friction coefficient μk on the two parameters was determined through tribological tests carried out using a pin-on-disc tribometer. A five-level central composite rotatable design (CCRD) was adopted for the experiment. All the test results were statistically analysed. The microhardness of the surface of the polymeric material was measured before and after the friction process. The surface was also examined under SEM. Temperature and contact pressure have been found to have a significant effect on the tribological properties of the tested sliding pairs. Relative to the applied friction conditions, the surfaces after friction showed rather heavy signs of wear.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Siraj Usmani ◽  
Hisham Al-Khalefah

In the present study, a rotary friction process was used to join nitinol in a similar welding combination. Macro- and microstructure characteristics of the weld zone were compared with adjacent zones and the base metal. The hardness and tensile properties of the joints were evaluated, and the results were discussed in relation to the weld microstructure. The weld macrostructure revealed a uniform flash around the circumference of the weld. The optical microstructure of the welded sample revealed fine recrystallized grains at the weld interface due to heavy deformation followed by dynamic recrystallization. The phase transformation behavior of the base metal and welded samples was studied by using a differential scanning calorimeter (DSC). The drift in phase transformation temperatures after rotary friction welding may be attributed to fine grain formation at the weld interface. Friction welded samples exhibited improved yield strength and hardness values compared to the base metal due to grain refinement at the weld interface.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3438
Author(s):  
Ange Lin ◽  
Jian Wu ◽  
Haohao Li ◽  
Zhe Li ◽  
Benlong Su ◽  
...  

The tribological characteristics of the cylinder directly affect the operation accuracy of the pneumatic servo system. However, the geometric error has a significant effect on its tribological behavior and the related research is insufficient. Thus, the dynamic friction process of rubber seals has been investigated considering the influence of geometric errors. Firstly, based on the self-made friction test platform, the friction force of the rubber seals was studied and the influence law of geometric error on the contact area of the rubber seal ring was revealed. Secondly, the numerical model of the friction and contact of the rubber seals for the cylinder segment was developed by using the finite element simulation method and the influence laws of machining errors, such as roundness and straightness on the friction characteristics, were revealed. Finally, synergy effects of roundness and straightness in the friction behavior of rubber seals considering geometric errors was investigated, which lays a foundation for the accurate prediction of cylinder dynamic mechanical properties.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gang Wang ◽  
Wei Wang ◽  
Yi Zhang ◽  
Xu Zhang ◽  
Zhaowen Hu ◽  
...  

Purpose This paper aims to investigate the micro-plastic behavior of granular material in three-body friction interface and its effect on friction characteristics. Design/methodology/approach A numerical model of particle breakage in friction contact was constructed based on the discrete element method. The influence of friction pair working condition and internal bonding strength on the micro-plastic behavior of particulate matter was analyzed. A reciprocating linear tribometer was used to verify the simulation results. Findings The results show that when the granular materials are squeezed and sheared by the friction pair, a shear zone inclined to the left is gradually formed, which leads to particle breakage. The breakage of the particle leads to the reduction of load-bearing capacity and the increase of friction coefficient. Due to the differences in bond strength and friction pairs working conditions, the particle plastic behavior is divided into the following three states: elastic deformation, breakage and plastic rheology. Originality/value This study is helpful to understand the effect of the micro-plastic behavior of particles on the three-body friction characteristics.


2021 ◽  
Vol 15 (3) ◽  
pp. 8277-8288
Author(s):  
Muhammad Penta Helios ◽  
Wanchai Asvapoositkul

This study focuses on the influence of dimensionless geometry parameters on the performance and loss coefficient of the throat and diffuser of the water jet pump apparatus. A water jet pump system was designed for a total of nine experimental cases with three different projection ratios and three throat-aspect ratios . The volumetric and pressure ratios - performance parameters are measured at a constant motive pressure and under varying backpressure. The efficiencies of the water jet pump in each configuration were assessed and compared. It was found that increasing 2 or 3 times of projection ratio degrades efficiency about 2% to 5.5%, respectively. Higher projection ratio (   > 1) expands the water jet diameter, which clogs the secondary flow. Hence, the changes in  > 3 may have a significant impact on efficiency degradation. Shorter may cause the loss of kinetic energy in the diffuser, while longer  reduces momentum transfer on the secondary flow. Moreover, the changes in  and  influence friction loss coefficient in the throat and diffuser section, and it reduces with increasing of volumetric ratio. It can be concluded that the appropriate value of projection ratio and throat-aspect ratio plays a role in the kinetic energy dissipation. It is also responsible for the location friction process, at a different volumetric ratio. However, the experimental results denoted the best efficiency and loss coefficient was achieved at a low projection ratio ( = 1) and small throat-aspect ratios (  = 5). The best efficiency of the study was about 23.37%.


Sign in / Sign up

Export Citation Format

Share Document