scholarly journals A New Model for Macroscopic Pedestrian Evacuation Planning with Safety and Duration Criteria

2014 ◽  
Vol 2 ◽  
pp. 486-494 ◽  
Author(s):  
Ismaila Abderhamane Ndiaye ◽  
Emmanuel Neron ◽  
Anais Linot ◽  
Nicolas Monmarche ◽  
Marc Goerigk
2021 ◽  
Vol 8 ◽  
Author(s):  
Natalia Zamora ◽  
Patricio A. Catalán ◽  
Alejandra Gubler ◽  
Matías Carvajal

Tsunami hazard is typically assessed from inundation flow depths estimated from one or many earthquake scenarios. However, information about the exact time when such inundation occurs is seldom considered, yet it is crucial for pedestrian evacuation planning. Here, we propose an approach to estimating tsunami hazard by combining tsunami flow depths and arrival times to produce a nine-level, qualitative hazard scale that is translated into a simple tsunami hazard map. To do this, one of the most populated regions of the coast of Chile is considered as the sample site, using a large set of 2,800 tsunamigenic sources from earthquakes with magnitudes in the range Mw8.6−9.2, modeled from generation to inundation at high resolution. Main outcomes show great dependency of the hazard categorization on the tsunami time arrival, and less to the flow depths. Also, these results demonstrate that incorporating different sources of variability such as different earthquake magnitudes and locations as well as stochastic slip distributions is essential. Moreover, this proof-of-concept exercise clearly shows that the qualitative hybrid categorization of the tsunami hazard allows for its more effective understanding, which can be beneficial for designing mitigation strategies such as evacuation planning, and its management.


Author(s):  
H. Akabori ◽  
K. Nishiwaki ◽  
K. Yoneta

By improving the predecessor Model HS- 7 electron microscope for the purpose of easier operation, we have recently completed new Model HS-8 electron microscope featuring higher performance and ease of operation.


2005 ◽  
Vol 173 (4S) ◽  
pp. 140-141
Author(s):  
Mariana Lima ◽  
Celso D. Ramos ◽  
Sérgio Q. Brunetto ◽  
Marcelo Lopes de Lima ◽  
Carla R.M. Sansana ◽  
...  

Author(s):  
Thorsten Meiser

Stochastic dependence among cognitive processes can be modeled in different ways, and the family of multinomial processing tree models provides a flexible framework for analyzing stochastic dependence among discrete cognitive states. This article presents a multinomial model of multidimensional source recognition that specifies stochastic dependence by a parameter for the joint retrieval of multiple source attributes together with parameters for stochastically independent retrieval. The new model is equivalent to a previous multinomial model of multidimensional source memory for a subset of the parameter space. An empirical application illustrates the advantages of the new multinomial model of joint source recognition. The new model allows for a direct comparison of joint source retrieval across conditions, it avoids statistical problems due to inflated confidence intervals and does not imply a conceptual imbalance between source dimensions. Model selection criteria that take model complexity into account corroborate the new model of joint source recognition.


1986 ◽  
Vol 31 (2) ◽  
pp. 108-109
Author(s):  
Alexandra G. Kaplan
Keyword(s):  

PsycCRITIQUES ◽  
2004 ◽  
Vol 49 (Supplement 13) ◽  
Author(s):  
Paul E. Priester
Keyword(s):  

1993 ◽  
Vol 38 (4) ◽  
pp. 406-407
Author(s):  
Donald B. Yarbrough ◽  
Monika Schaffner

Sign in / Sign up

Export Citation Format

Share Document