pedestrian evacuation
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 80)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 147 ◽  
pp. 105574
Author(s):  
Yao Xiao ◽  
Jun Xu ◽  
Mohcine Chraibi ◽  
Jun Zhang ◽  
Chao Gou

2022 ◽  
Author(s):  
Guan-ning Wang ◽  
Tao Chen ◽  
Jin-wei Chen ◽  
Kaifeng Deng ◽  
Ru-dong Wang

Abstract The study of the panic evacuation process is of great significance to emergency management. Panic not only causes negative emotions such as irritability and anxiety, but also affects the pedestrians decision-making process, thereby inducing the abnormal crowd behavior. Prompted by the epidemiological SIR model, an extended floor field cellular automaton model was proposed to investigate the pedestrian dynamics under the threat of hazard resulting from the panic contagion. In the model, the conception of panic transmission status (PTS) was put forward to describe pedestrians' behavior who could transmit panic emotions to others. The model also indicated the pedestrian movement was governed by the static and hazard threat floor field. Then rules that panic could influence decision-making process were set up based on the floor field theory. The simulation results show that the stronger the pedestrian panic, the more sensitive pedestrians are to hazards, and the less able to rationally find safe exits. However, when the crowd density is high, the panic contagion has a less impact on the evacuation process of pedestrians. It is also found that when the hazard position is closer to the exit, the panic will propagate for a longer time and have a greater impact on the evacuation. The results also suggest that as the extent of pedestrian's familiarity with the environment increases, pedestrians spend less time to escape from the room and are less sensitive to the hazard. In addition, it is essential to point out that, compared with the impact of panic contagion, the pedestrian's familiarity with environment has a more significant influence on the evacuation.


2021 ◽  
Vol 13 (23) ◽  
pp. 13194
Author(s):  
Mengting Liu ◽  
Wei Zhu ◽  
Yafei Wang ◽  
Jianchun Zheng

This paper aims to present an improved evacuation model, which is capable of simulating individual exit selection behavior based on the acquisition and processing of information, especially in dangerous and unfamiliar environments. Firstly, an evacuation model was improved by the introduction of a floor field of gas concentration and an exit selection model, considering the congestion avoidance and danger avoidance behavior. Secondly, the process of information perception and transmission was studied and introduced into the model with a set of rules. Finally, real experiments in a simple double-exit room were conducted for model validation and parameter setting, and simulation experiments in scenarios with an unknown hazard or unknown exits were conducted to confirm the necessity and rationality of introducing information perception and transmission. The simulation results show that, with the increase in perception distance or trust extent, the pedestrian safety increases. The critical values of perception distance or trust extent, below which some people cannot acquire any new information, vary depending on the pedestrian density. When the density is high, the influence of perception distance or trust extent reduces, and the probability of reselecting an exit increases, which causes the safety of pedestrians to decrease.


Author(s):  
Jun Li ◽  
Haoxiang Zhang

Crowd evacuation simulation is an important research topic for designing reasonable building layout and effective evacuation routes. The reciprocal velocity obstacles (RVO) model is a pedestrian motion model which is used, but it does not work when complex and multiple obstacles are present in the scene. This paper proposes an improved RVO model with path planning and emotion contagion for crowd evacuation simulation. The model uses the vertices of the obstacles to construct pedestrian path nodes for planning pedestrian evacuation paths. To make the pedestrian evacuation paths simulation results more reasonable, the safety and congestion of the path nodes are considered, to plan the shortest evacuation path. Finally, a contagious disease model is introduced to study the impact of emotion contagion on the evacuation process. A crowd evacuation simulation system is developed, and simulations have been carried out in a variety of scenarios. Experiments show that the model can effectively simulate crowd evacuation, providing a powerful reference for building and layout design.


2021 ◽  
Vol 11 (19) ◽  
pp. 9009
Author(s):  
Afnan Alhindi ◽  
Deem Alyami ◽  
Aziza Alsubki ◽  
Razan Almousa ◽  
Najla Al Nabhan ◽  
...  

One of the most challenging problems during disasters involving crowds is pedestrian evacuation. It is very important in such situations to improve survival rates by getting all or most of the people out in the shortest possible time. Technological intervention through augmenting the evacuation process using an unmanned aerial vehicle (UAV) exhibits great potential in improving survival rates, but the exploration of this method is still in its infancy. Therefore, this study explores the potential of utilizing UAVs for crowd management during emergency evacuations. We conducted a rigorous study, using a simulation model featuring four UAVs and differing numbers of pedestrians, with use of two UAV guidance approaches: partial guidance and full guidance. The experimental results suggest that exploiting UAVs in crowd evacuation and following the partial guidance approach can lead to a more efficient evacuation process.


2021 ◽  
Vol 13 (18) ◽  
pp. 10463
Author(s):  
Heng Wang ◽  
Tiandong Xu ◽  
Feng Li

Subway station emergencies have caused serious casualties in recent years, so the aim of this research was to develop and establish an evacuation model that considers the OCEAN personality psychological traits to improve the credibility of the emergency pedestrian evacuation simulation. Firstly, the relationship between the personality and psychological stress was established based on the reconstruction of a passenger’s personality traits. Secondly, the relationship between the expected speed and a passenger’s personality traits was modified based on the social force model. Finally, the simulation was carried out using the Anylogic software. The results show that as the value of the personality increases, the evacuation time of personalities ψA and ψC gradually increases, but the opposite effect is observed for personalities ψN and ψE. Similarly, as the value of personality traits increases, the speed of personalities ψA and ψC gradually decreases, but the opposite effect is observed for personalities ψN and ψE. Only during peak periods, as the value of personality traits increases, the density of the connecting area of passengers with personality traits ψA and ψC gradually increases; on the contrary, that of passengers with personality traits ψN and ψE gradually decreases. The conclusion of this study is that different personality traits have different effects on evacuation behavior, which enriches the model of pedestrian evacuation further.


Sign in / Sign up

Export Citation Format

Share Document