scholarly journals Influence of Volatile Organic Compounds Emissions from Road Marking Paints on Ground-level Ozone Formation: Case Study of Kraków, Poland

2016 ◽  
Vol 14 ◽  
pp. 714-723 ◽  
Author(s):  
Tomasz E. Burghardt ◽  
Anton Pashkevich ◽  
Lidia Żakowska
2017 ◽  
Vol 474 (1) ◽  
pp. 599-603 ◽  
Author(s):  
E. V. Berezina ◽  
K. B. Moiseenko ◽  
A. I. Skorokhod ◽  
N. F. Elansky ◽  
I. B. Belikov

2016 ◽  
Vol 15 (1) ◽  
pp. 007-018 ◽  
Author(s):  
Tomasz Burghardt ◽  
Anton Pashkevich ◽  
Lidia Żakowska

Solventborne road marking paints are meaningful sources of Volatile Organic Compounds (VOCs), which under solar irradiation affect formation of tropospheric ozone, a signif cant pulmonary irritant and a key pollutant responsible for smog formation. Influence of particular VOCs on ground-level ozone formation potential, quantified in Maximum Incremental Reactivities (MIR), were used to calculate potential contribution of solvents from road marking paints used in Poland to tropospheric ozone formation. Based on 2014 data, limited only to roads administered by General Directorate for National Roads and Motorways (GDDKiA), emissions of VOCs from road marking paints in Poland were about 494 838 kg, which could lead to production of up to 1 003 187 kg of ropospheric ozone. If aromatic-free solventborne paints based on ester solvents, such as are commonly used in Western Europe, were utilised, VOC emissions would not be lowered, but potentially formed ground-level ozone could be limited by 50-70%. Much better choice from the perspective of environmental protection would be the use of waterborne road marking paints like those mandated in Scandinavia – elimination of up to 82% of the emitted VOCs and up to 95% of the potentially formed tropospheric ozone could be achieved.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Gunnar W. Schade ◽  
Geoffrey S. Roest

Concentrations of volatile organic compounds—precursors to ground-level ozone formation—are on the rise in areas over and downwind of a major shale oil and gas field in Texas.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1365
Author(s):  
Kun He ◽  
Zhenxing Shen ◽  
Jian Sun ◽  
Yali Lei ◽  
Yue Zhang ◽  
...  

The profiles, contributions to ozone formation, and associated health risks of 56 volatile organic compounds (VOCs) species were investigated using high time resolution observations from photochemical assessment monitoring stations (PAMs) in Luoyang, China. The daily averaged concentration of total VOCs (TVOCs) was 21.66 ± 10.34 ppbv in urban areas, 14.45 ± 7.40 ppbv in suburbs, and 37.58 ± 13.99 ppbv in an industrial zone. Overall, the VOCs levels in these nine sites followed a decreasing sequence of alkanes > aromatics > alkenes > alkyne. Diurnal variations in VOCs exhibited two peaks at 8:00–9:00 and 19:00–20:00, with one valley at 23:00–24:00. Source apportionment indicated that vehicle and industrial emissions were the dominant sources of VOCs in urban and suburban sites. The industrial site displayed extreme levels, with contributions from petrochemical-related sources of up to 38.3%. Alkenes and aromatics displayed the highest ozone formation potentials because of their high photochemical reactivity. Cancer and noncancer risks in the industrial site were higher than those in the urban and suburban areas, and USEPA possible risk thresholds were reached in the industrial site, indicating PAMs VOC–related health problems cannot be ignored. Therefore, vehicle and industrial emissions should be prioritized when considering VOCs and O3 control strategies in Luoyang.


Sign in / Sign up

Export Citation Format

Share Document