scholarly journals Evaluation of horizontal permeability characteristics of granular subbase material

2020 ◽  
Vol 48 ◽  
pp. 3725-3733
Author(s):  
Hemla Naik Kandlavath ◽  
Priyadarshini Saha Chowdhury ◽  
M Amaranatha Reddy
Author(s):  
Jared Grantham ◽  
Larry Welling

In the course of urine formation in mammalian kidneys over 90% of the glomerular filtrate moves from the tubular lumen into the peritubular capillaries by both active and passive transport mechanisms. In all of the morphologically distinct segments of the renal tubule, e.g. proximal tubule, loop of Henle and distal nephron, the tubular absorbate passes through a basement membrane which rests against the basilar surface of the epithelial cells. The basement membrane is in a strategic location to affect the geometry of the tubules and to influence the movement of tubular absorbate into the renal interstitium. In the present studies we have determined directly some of the mechanical and permeability characteristics of tubular basement membranes.


Author(s):  
Mohammad Nadeem Akhtar ◽  
Mohammed Jameel ◽  
Abdullah M. Al-Shamrani ◽  
Nadeem A. Khan ◽  
Zainah Ibrahim ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 587
Author(s):  
Run Shi ◽  
Huaiguang Xiao ◽  
Chengmeng Shao ◽  
Mingzheng Huang ◽  
Lei He

Studying the influence of grain characteristics on fluid flow in complex porous rock is one of the most important premises to reveal the permeability mechanism. Previous studies have mainly investigated the fluid flow laws in complex rock structures using an uncontrollable one single parameter of natural rock models or oversimplified control group models. In order to solve these problems, this paper proposes a novel method to reconstruct models that can independently control one single parameter of rock grain membranes based on mapping and reverse-mapping ideas. The lattice Boltzmann method is used to analyze the influence of grain parameters (grain radius, space, roundness, orientation, and model resolution) on the permeability characteristics (porosity, connectivity, permeability, flow path, and flow velocity). Results show that the grain radius and space have highly positive and negative correlations with permeability properties. The effect of grain roundness and resolution on permeability properties shows a strong regularity, while grain orientation on permeability properties shows strong randomness. This study is of great significance to reveal the fluid flow laws of natural rock structures.


1989 ◽  
Vol 31 (4) ◽  
pp. 219-228
Author(s):  
Tetsuro ISHIDA ◽  
Toshinobu AKAGI

RSC Advances ◽  
2018 ◽  
Vol 8 (21) ◽  
pp. 11652-11660 ◽  
Author(s):  
Xiaojun Wang ◽  
Yulong Zhuo ◽  
Kui Zhao ◽  
Wen Zhong

Two coupling processes—solution seepage and chemical replacement—occur in the in situ leaching process of ion-absorbed-rare-earth ore.


Sign in / Sign up

Export Citation Format

Share Document