scholarly journals Measurement of the Horizontal Permeability of Undisturbed Clay

1989 ◽  
Vol 31 (4) ◽  
pp. 219-228
Author(s):  
Tetsuro ISHIDA ◽  
Toshinobu AKAGI
2021 ◽  
Author(s):  
Nandana Ramabhadra Agastya

Abstract We aim to find a universal method and/or parameter to quantify impact of overall heterogeneity on waterflood performance. For this purpose, we combined the Lorenz coefficient, horizontal permeability to vertical permeability ratio, and thief zone permeability to average permeability ratio, with a radar chart. The area of the radar chart serves as a single parameter to rank reservoirs according to heterogeneity, and correlates to waterflood performance. The parameters investigated are vertical and horizontal permeability. Average porosity, initial water saturation, and initial diagonal pressure ratio are kept constant. Computer based experiments are used over the course of this entire research. We conducted permeability studies that demonstrate the effects of thief zones and crossflow. After normalizing these parameters into a number between 0 and 1, we then plot them on a radar chart. A reservoir's overall degree of heterogeneity can be inferred using the radar chart area procedure discussed in this study. In general, our simulations illustrate that the larger the radar chart area, the more heterogenous the reservoir is, which in turn yields higher water cut trends and lower recovery factors. Computer simulations done during this study also show that the higher the Lorenz coefficient, the higher the probability of a thief zone to exist. Simulations done to study crossflow also show certain trends with respect to under tonguing and radar chart area.


2019 ◽  
Vol 107 ◽  
pp. 189-200 ◽  
Author(s):  
Yi Xian Lim ◽  
Siew Ann Tan ◽  
Kok-Kwang Phoon

The paper focuses on the filtration and electrical anisotropy coefficients and relationship between vertical and horizontal permeability in sandstone reservoir rocks. Field case study of DDB reservoir rocks. Petrophysical properties and parameters are estimated from core and log data from a Moscovian and Serpukhovian stages of Dnipro-Donetsk Basin (West-Shebelynka area well 701-Bis and South-Kolomak area well 31). Routine core analysis included estimation of absolute permeability, open porosity, irreducible water saturation and electrical resistivity (on dry and saturated by mineralized solution) of 40 core samples along two orthogonal directions. Shale fraction is estimated using well logging data in wells which are analyzed. The authors report that reservoir rocks are represented by compacted poor-porous (φ <10 %), low permeable (k<1mD) laminated sandstone with different ratios of clay minerals (Vsh from 0,03 to 0,7) and high volume of micaceous minerals (in some cases 20-30 %). Research theory. One of the main objectives of the work is to develop empirical correlation between vertical permeability and other capacitive and filtration properties for compacted sandstone reservoirs. A modified Kozeny-Carman equation and the concept of hydraulic average radius form the basis for the technique. Results. Coefficients of the anisotropy of gas permeability (IA) and electrical resistivity (λ) are defined based on the results of petrophysical studies. The experiments proved that IA lies in a range from 0,49 to 5 and λ from 0,77 to 1,06. Permeability and electrical resistivity anisotropy in most cases have horizontal distribution. It has been shown that in West-Shebelynka area sample №1 (depth 4933 m) there is probably no fluids flow in vertical direction and in samples №№3 and 15 fractures have the vertical orientation. We have also found that the values of electrical and filtration anisotropy for all samples of South-Kolomak area are similar, this characterized the unidirectionality in their filtration properties, as well as the fact that the motion of the fluid flow mainly in the horizontal direction. In the studied rocks the degree of anisotropy has been concluded to depend on the volume of clay and micaceous minerals, their stratification, fractures, density, and their orientation. New correlation between vertical permeability, horizontal permeability and effective porosity are developed for Late Carboniferous DDB intervals that are analyzed.


2020 ◽  
Vol 12 (16) ◽  
pp. 6428
Author(s):  
Jaewon Yoo ◽  
Tan Hung Nguyen ◽  
Eungu Lee ◽  
Yunje Lee ◽  
Jaehun Ahn

Although the permeability of open-graded friction course (OGFC) materials in the transverse direction and the reduction in permeability associated with long-term traffic loading are important issues, they have remained under researched thus far. In this study, testing equipment and procedure were developed to evaluate the permeability of an OGFC specimen along the horizontal direction and its reduction due to rutting. Horizontal permeability tests were conducted by varying the hydraulic gradient of specimens with porosities of 19.6%, 15.6%, and 10.3%. The reduction in cross-section due to traffic loading was simulated via a wheel tracking test, and the permeability was subsequently evaluated. The reliability of test methodology was successfully verified; the tendency of the relationship between discharge velocity and hydraulic gradient was in good agreement with existing research results. The reduction in cross-sectional flow area due to rutting decreased and the horizontal permeability. The test results using developed testing equipment will enable efficient OGFC design.


A steady-state method is described for measuring the permeability of soil in situ ; it is applicable only to saturated soil below the water table. A pair of small wells, in one of which is placed a pump, forms a water circulating system. The pump depresses the level in one well and the pumped water, being passed through a flowmeter and emptied back into the second well, maintains a level in the latter higher than the static equilibrium level. The difference of levels in the wells is related to the rate of flow of water and to the soil permeability. In anisotropic media the method gives apparent horizontal permeability. The use of two pairs of wells, the planes containing the axes of each pair being suitably oriented, enables us to determine the permeabilities in the directions of the horizontal axes, of anisotropy. Combining our method with Kirkham’s, which provides an estimate of apparent permeability which is dependent upon both horizontal and vertical permeabilities, we are able to calculate the axial permeabilities of triaxially anisotropic material.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Chan Yeong Kim ◽  
Weon Shik Han ◽  
Eungyu Park ◽  
Jina Jeong ◽  
Tianfu Xu

Leakage of stored CO2 from a designated deep reservoir could contaminate overlying shallow potable aquifers by dissolution of arsenic-bearing minerals. To elucidate CO2 leakage-induced arsenic contamination, 2D multispecies reactive transport models were developed and CO2 leakage processes were simulated in the shallow groundwater aquifer. Throughout a series of numerical simulations, it was revealed that the movement of leaked CO2 was primarily governed by local flow fields within the shallow potable aquifer. The induced low-pH plume caused dissolution of aquifer minerals and sequentially increased permeabilities of the aquifer; in particular, the most drastic increase in permeability appeared at the rear margin of CO2 plume where two different types of groundwater mixed. The distribution of total arsenic (∑As) plume was similar to the one for the arsenopyrite dissolution. The breakthrough curve of ∑As monitored at the municipal well was utilized to quantify the human health risk. In addition, sensitivity studies were conducted with different sorption rates of arsenic species, CO2 leakage rates, and horizontal permeability in the aquifer. In conclusion, the human health risk was influenced by the shape of ∑As plume, which was, in turn, affected by the characteristics of CO2 plume behavior such as horizontal permeability and CO2 leakage rate.


Sign in / Sign up

Export Citation Format

Share Document