peritubular capillaries
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 41)

H-INDEX

42
(FIVE YEARS 4)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3146
Author(s):  
Valeria Victoria Costantino ◽  
Andrea Fernanda Gil Lorenzo ◽  
Victoria Bocanegra ◽  
Patricia G. Vallés

Hypertensive nephrosclerosis is the second most common cause of end-stage renal disease after diabetes. For years, hypertensive kidney disease has been focused on the afferent arterioles and glomeruli damage and the involvement of the renin angiotensin system (RAS). Nonetheless, in recent years, novel evidence has demonstrated that persistent high blood pressure injures tubular cells, leading to epithelial–mesenchymal transition (EMT) and tubulointerstitial fibrosis. Injury primarily determined at the glomerular level by hypertension causes changes in post-glomerular peritubular capillaries that in turn induce endothelial damage and hypoxia. Microvasculature dysfunction, by inducing hypoxic environment, triggers inflammation, EMT with epithelial cells dedifferentiation and fibrosis. Hypertensive kidney disease also includes podocyte effacement and loss, leading to disruption of the filtration barrier. This review highlights the molecular mechanisms and histologic aspects involved in the pathophysiology of hypertensive kidney disease incorporating knowledge about EMT and tubulointerstitial fibrosis. The role of the Hsp70 chaperone on the angiotensin II–induced EMT after angiotensin II type 1 receptor (AT1R) blockage, as a possible molecular target for therapeutic strategy against hypertensive renal damage is discussed.


2021 ◽  
Author(s):  
Felipe Freitas ◽  
David Attwell

Acute kidney injury is common, with ~13 million cases and 1.7 million deaths/year worldwide. A major cause is renal ischemia, typically following cardiac surgery, renal transplant or severe hemorrhage. We examined the cause of the sustained reduction in renal blood flow (no-reflow), which exacerbates kidney injury even after an initial cause of compromised blood supply is removed. After 60 min kidney ischemia and 30-60 min reperfusion, renal blood flow remained reduced, especially in the medulla, and kidney tubule damage was detected as Kim-1 expression. Constriction of the medullary descending vasa recta and cortical peritubular capillaries occurred near pericyte somata, and led to capillary blockages, yet glomerular arterioles and perfusion were unaffected, implying that the long-lasting decrease of renal blood flow contributing to kidney damage was generated by pericytes. Blocking Rho kinase to decrease pericyte contractility from the start of reperfusion increased the post-ischemic diameter of the descending vasa recta capillaries at pericytes, reduced the percentage of capillaries that remained blocked, increased medullary blood flow and reduced kidney injury. Thus, post-ischemic renal no-reflow, contributing to acute kidney injury, reflects pericytes constricting the descending vasa recta and peritubular capillaries. Pericytes are therefore an important therapeutic target for treating acute kidney injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Désirée Tampe ◽  
Peter Korsten ◽  
Philipp Ströbel ◽  
Samy Hakroush ◽  
Björn Tampe

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small vessel vasculitis affecting multiple organ systems, including the kidney. Besides investigations focusing on renal outcomes, sex differences associated with distinct clinical and histopathological findings in ANCA glomerulonephritis (GN) have not been systematically investigated. Therefore, we here aimed to systematically analyze sex differences in patients with AAV and biopsy-proven ANCA GN. We provide a comprehensive analysis of 53 kidney biopsies with ANCA GN retrospectively included between 2015 and 2020 and identified specific sex differences in ANCA GN concerning laboratory parameters and systematic scoring of renal histopathology glomerular and tubulointerstitial lesions, and extrarenal manifestations of AAV. We did not observe any correlation between sex and short-term clinical AAV course or disease severity by comparing general AAV parameters. AAV manifestations in females occurred at an older age with more joint involvement. Regarding histopathological findings, we, again, observed no sex difference among ANCA GN classification, but a significant correlation between females and distinct histopathological findings with less tubulointerstitial inflammation and vasculitis of peritubular capillaries. Finally, we here identified fewer associations between clusters of clinical, laboratory parameters, and histopathological findings in females as compared to males. These findings are of great relevance and further improve our understanding of sex differences in the pathogenesis of ANCA GN. While future studies about specific sex differences and conclusions in these clusters are crucial, our observations further support that sex differences are relevant, affect distinct parameters, and influence clinical, laboratory parameters, and histopathological findings in AAV, particularly ANCA GN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tamar A. J. van den Berg ◽  
Marius C. van den Heuvel ◽  
Janneke Wiersema-Buist ◽  
Jelle Adelmeijer ◽  
Gertrude J. Nieuwenhuijs-Moeke ◽  
...  

AbstractIn kidney transplantation, microthrombi and fibrin deposition may lead to local perfusion disorders and subsequently poor initial graft function. Microthrombi are often regarded as donor-derived. However, the incidence, time of development, and potential difference between living donor kidneys (LDK) and deceased donor kidneys(DDK), remains unclear. Two open-needle biopsies, taken at preimplantation and after reperfusion, were obtained from 17 LDK and 28 DDK transplanted between 2005 and 2008. Paraffin-embedded sections were immunohistochemically stained with anti-fibrinogen antibody. Fibrin deposition intensity in peritubular capillaries(PTC) and glomeruli was categorized as negative, weak, moderate or strong and the number of microthrombi/mm2 was quantified. Reperfusion biopsies showed more fibrin deposition (20% to 100% moderate/strong, p < 0.001) and more microthrombi/mm2 (0.97 ± 1.12 vs. 0.28 ± 0.53, p < 0.01) than preimplantation biopsies. In addition, more microthrombi/mm2 (0.38 ± 0.61 vs. 0.09 ± 0.22, p = 0.02) and stronger fibrin intensity in glomeruli (28% vs. 0%, p < 0.01) and PTC (14% vs. 0%, p = 0.02) were observed in preimplantation DDK than LDK biopsies. After reperfusion, microthrombi/mm2 were comparable (p = 0.23) for LDK (0.09 ± 0.22 to 0.76 ± 0.49, p = 0.03) and DDK (0.38 ± 0.61 to 0.90 ± 1.11, p = 0.07). Upon reperfusion, there is an aggravation of microthrombus formation and fibrin deposition within the graft. The prominent increase of microthrombi in LDK indicates that they are not merely donor-derived.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Uwe Hoff ◽  
Denise Markmann ◽  
Melina Nieminen-Kelhä ◽  
Klemens Budde ◽  
Björn Hegner

AbstractmTOR inhibitors offer advantages after kidney transplantation including antiviral and antitumor activity besides facilitating low calcineurin inhibitor exposure to reduce nephrotoxicity. Concerns about adverse effects due to antiproliferative and antiangiogenic properties have limited their clinical use particularly early after transplantation. Interference with vascular endothelial growth factor (VEGF)-A, important for physiologic functioning of renal endothelial cells and tubular epithelium, has been implicated in detrimental renal effects of mTOR inhibitors. Low doses of Rapamycin (loading dose 3 mg/kg bodyweight, daily doses 1.5 mg/kg bodyweight) were administered in an allogenic rat kidney transplantation model resulting in a mean through concentration of 4.30 ng/mL. Glomerular and peritubular capillaries, tubular cell proliferation, or functional recovery from preservation/reperfusion injury were not compromised in comparison to vehicle treated animals. VEGF-A, VEGF receptor 2, and the co-receptor Neuropilin-1 were upregulated by Rapamycin within 7 days. Rat proximal tubular cells (RPTC) responded in vitro to hypoxia with increased VEGF-A and VEGF-R1 expression that was not suppressed by Rapamycin at therapeutic concentrations. Rapamycin did not impair proliferation of RPTC under hypoxic conditions. Low-dose Rapamycin early posttransplant does not negatively influence the VEGF network crucial for recovery from preservation/reperfusion injury. Enhancement of VEGF signaling peritransplant holds potential to further improve outcomes.


Author(s):  
Nattawat Klomjit ◽  
Mireille El Ters ◽  
Benjamin A. Adam ◽  
Priya Sampathkumar ◽  
Raymund R. Razonable ◽  
...  

2021 ◽  
Author(s):  
Tamar A.J. van den Berg ◽  
Marius C. van den Heuvel ◽  
Janneke Wiersema-Buist ◽  
Jelle Adelmeijer ◽  
Gertrude J. Nieuwenhuijs-Moeke ◽  
...  

Abstract In kidney transplantation, microthrombi and fibrin deposition may lead to local perfusion disorders and subsequently poor initial graft function. Microthrombi are often regarded as donor-derived. However, the incidence, time of development, and potential difference between living donor kidneys (LDK) and deceased donor kidneys(DDK), remains unclear. Two open-needle biopsies, taken at preimplantation and after reperfusion, were obtained from 17 LDK and 28 DDK transplanted between 2005 and 2008. Paraffin-embedded sections were immunohistochemically stained with anti-fibrinogen antibody. Fibrin deposition intensity in peritubular capillaries(PTC) and glomeruli was categorized as negative, weak, moderate or strong and the number of microthrombi/mm2 was quantified. Reperfusion biopsies showed more fibrin deposition (20–100% moderate/strong, p < 0.001) and more microthrombi/mm2 (0.97 ± 1.12 vs. 0.28 ± 0.53, p < 0.01) than preimplantation biopsies. In addition, more microthrombi/mm2 (0.38 ± 0.61 vs. 0.09 ± 0.22, p = 0.02) and stronger fibrin intensity in glomeruli (28% vs. 0%, p < 0.01) and PTC (14% vs. 0%, p = 0.02) were observed in preimplantation DDK than LDK biopsies. After reperfusion, microthrombi/mm2 were comparable (p = 0.23) for LDK (0.09 ± 0.22 to 0.76 ± 0.49, p = 0.03) and DDK (0.38 ± 0.61 to 0.90 ± 1.11, p = 0.07). Upon reperfusion, there is an aggravation of microthrombus formation and fibrin deposition within the graft. The prominent increase of microthrombi in LDK indicates that they are not merely donor-derived.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Björn Tampe ◽  
Laura Schridde ◽  
Samy Hakroush

Abstract Background and Aims Plasmalemmal vesicle-associated protein-1 (PLVAP or PV-1) is a major protein of diaphragm-bridged fenestrated endothelial cells found in capillaries of neuroendocrine glands and peritubular capillaries. In contrast to peritubular capillaries, the glomerulus is known for its unique fenestrated endothelium without any diaphragm formation thereby ensuring free filtration. Here we aimed to investigate whether PLVAP is expressed in glomerular endothelial cells in various glomerular diseases and whether PLVAP expression is associated with the formation of diaphragm-bridged endothelial cells. Method A total number of 114 biopsy samples of glomerular diseases including diabetic nephropathy, FSGS, IgA-Nephritis, ANCA-GN and Lupus–Nephritis were analyzed immunohistochemistically for glomerular PLVAP expression. A fraction of PLVAP positive cases was subsequently investigated ultrastrucurally for the formation of diaphragm-bridged glomerular endothelial cells. Results One third of all cases showed at least one glomerulus with one single circumferential PLVAP staining. Interestingly, the most prominent staining, affecting the entire glomerular tuft, was observed in diabetic nephropathy and ANCA-GN. Ultrastructurally, such cases exhibited injured endothelium with focal detachment from the glomerular basement membrane, loss of pore formation and frequently diaphragm-bridged fenestrations reminiscent of peritubular capillaries. Conclusion Our data show that injured glomerular endothelium is capable of forming true diaphragm-bridged fenestrations, suggesting a possible role in preventing glomerular protein leakage and limiting its detachment from the GBM.


2021 ◽  
pp. 1-11
Author(s):  
Ting-Ting Liu ◽  
Ran Luo ◽  
Yi Yang ◽  
Yi-Chun Cheng ◽  
Dan Chang ◽  
...  

<b><i>Introduction:</i></b> Increasing evidence has demonstrated that loss of peritubular capillaries plays a critical role in renal interstitial fibrosis. Leucine-rich α2-glycoprotein-1 (LRG1) has been observed promoting angiogenesis in the ocular disease mouse model and myocardial infarction model. We aimed to explore the role of LRG1 in renal interstitial fibrosis. <b><i>Methods:</i></b> We analyzed the expression of LRG1 in the plasma and kidney of CKD patients by ELISA and immunohistochemistry. Relationships between the expression of LRG1 in plasma and kidney and renal fibrosis and inflammation were analyzed. Tube formation assay was used to detect the angiogenesis in the human umbilical vein endothelial cell lines (HUVECs). And real-time PCR was used to detect the mRNA expression of LRG1, inflammatory factors, renal tubular injury indicators, pro-fibrotic cytokines, and CD31. We examined the effects of genetic ablation of LRG1 on renal fibrosis induced by unilateral ureteral obstruction (UUO) mice model at day 7. <b><i>Results:</i></b> We demonstrated that the expression of LRG1 in renal tissues and plasma samples was upregulated in CKD patients. And the expression of LRG1 was elevated in human renal tubular epithelial cell line (HK-2) cells in response to the stimulation of TNF-α in vitro, and in kidney after UUO in vivo. The deficiency of the LRG1 gene aggravated renal fibrosis, inflammatory cells infiltration, and capillary rarefaction after UUO. In vitro, LRG1 promoted the tube formation of HUVEC cells. LRG1 inhibits fibronectin secretion induced by TGF-β1 in HK-2 and overexpression of LRG1 in HK-2 cells decreased fibronectin secretion. <b><i>Conclusion:</i></b> LRG1 may prevent renal fibrosis by inhibiting the secretion of inflammatory and pro-fibrotic cytokines and promoting angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document