scholarly journals Experimental measurements of the permeability characteristics of rare earth ore under the hydro-chemical coupling effect

RSC Advances ◽  
2018 ◽  
Vol 8 (21) ◽  
pp. 11652-11660 ◽  
Author(s):  
Xiaojun Wang ◽  
Yulong Zhuo ◽  
Kui Zhao ◽  
Wen Zhong

Two coupling processes—solution seepage and chemical replacement—occur in the in situ leaching process of ion-absorbed-rare-earth ore.

Rare Metals ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 195-201 ◽  
Author(s):  
N. M. Shokobayev ◽  
C. Bouffier ◽  
T. S. Dauletbakov

2011 ◽  
Vol 286 (1-2) ◽  
pp. 32-47 ◽  
Author(s):  
Christopher M. Fisher ◽  
John M. Hanchar ◽  
Scott D. Samson ◽  
Bruno Dhuime ◽  
Janne Blichert-Toft ◽  
...  

2021 ◽  
Vol 163 ◽  
pp. 106800
Author(s):  
Jian Feng ◽  
Junxia Yu ◽  
Shuxin Huang ◽  
Xiaoyan Wu ◽  
Fang Zhou ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


1994 ◽  
Vol 249 (2) ◽  
pp. 266-270 ◽  
Author(s):  
P Gros ◽  
G Fiat ◽  
D Brun ◽  
B Daudin ◽  
J Eymery ◽  
...  

2012 ◽  
Vol 616-618 ◽  
pp. 538-542 ◽  
Author(s):  
Fu Xiang Zhang ◽  
Wei Feng Ge ◽  
Xiang Tong Yang ◽  
Wei Zhang ◽  
Jian Xin Peng

To alleviate the problems of casing collapse induced by the coupling effect of rock salt creep and casing wear, the effects of salt creep, attrition rate and casing abrasive position on the equivalent stress on casings in non-uniform in-situ stress field is analyzed by finite-difference model with worn casing, cement and salt formation. It indicates that, creep reduces the yield strength of worn casing to a certain extent; Equivalent stress on casings is bigger and more non-uniform when the abrasion is more serious; Wear position obviously changes the distribution of equivalent stress on casing, and when the wear located along the direction of the minimum in-situ stress, equivalent stress on casing could be the largest that leads to the casing being failed more easily. Equivalent stress on casings increases gradually with creep time increasing and will get to balance in one year or so; In addition, new conclusions are obtained which are different from before: the maximum equivalent stress on casings is in the direction of the minimum horizontal stress, only when the attrition rate of the casing is little; otherwise, it is not. This method could help to improve the wear prediction and design of casings.


2018 ◽  
Vol 120 ◽  
pp. 35-43 ◽  
Author(s):  
Xiao Yanfei ◽  
Gao Guohua ◽  
Huang Li ◽  
Feng Zongyu ◽  
Lai Fuguo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document