Nusselt number and fluid flow analysis of solar air heater having transverse circular rib roughness on absorber plate using LCT and computational technique

2019 ◽  
Vol 14 ◽  
pp. 100398 ◽  
Author(s):  
Amit Kumar ◽  
Apurba Layek
2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shantanu Purohit ◽  
N. Madhwesh ◽  
K. Vasudeva Karanth ◽  
N. Yagnesh Sharma

This study presents an innovative idea to augment heat transfer to an air heater using helicoidal finned arrangement. A parametric analysis of the helicoidal shaped fin geometry is considered with helicoidal pitch ratio of 0.1666–0.3, fin diameter ratio of 1.75–2. For the placement of the fin beneath the absorber plate, longitudinal pitch ratio ranging from 0.0416 to 0.1666 are used. The flow Reynolds number used for the study ranges from 4800 to 25,000. The effects of helicoidal pitch ratio, wire diameter ratio and longitudinal pitch ratio on Nusselt number and friction factor have been discussed. It is seen from the analysis that there is a significant improvement in Nusselt number for the case of helicoidal fin of wire diameter ratio of 1 when compared to base model as well as straight fin model for the operating range of Reynolds number. It is also observed from the analysis that for the helicoidal fin configuration of helicoidal pitch ratio of 0.2333, friction factor appears to be moderate. Flow and roughness parameters for roughened solar air heater have been optimized using thermal-hydraulic enhancement factor (THEF). The study reveals that by the use of helicoidal fins, maximum enhancement in the Nusselt number is found to be 2.21 times when compared to the base model for longitudinal pitch ratio of 0.0416, helicoidal pitch ratio of 0.166 for a fixed wire diameter. The improvement obtained in performance corresponding to increased Nusselt number establishes the efficacy the helicoidal fin design for the absorber plate.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Vipin B. Gawande ◽  
A. S. Dhoble ◽  
D. B. Zodpe

CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤P/e≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.


Sign in / Sign up

Export Citation Format

Share Document