Effect of wetness pattern on the fin-tube heat exchanger performance under partially wet-surface condition

2020 ◽  
Vol 19 ◽  
pp. 100619
Author(s):  
Seyed Abdolkarim Payambarpour ◽  
Hossein Shokouhmand ◽  
Mohammad Hossein Ahmadi ◽  
Mamdouh El Haj Assad ◽  
Lingen Chen
2002 ◽  
Vol 16 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Dong-Seong Park ◽  
Min-Ho Chung ◽  
Sang-Yun Lee

2012 ◽  
Vol 26 (9) ◽  
pp. 2949-2958 ◽  
Author(s):  
Seong Won Hwang ◽  
Dong Hwan Kim ◽  
June Kee Min ◽  
Ji Hwan Jeong

2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 363 ◽  
Author(s):  
Jong Hwi Lee ◽  
Jong-Hyeon Shin ◽  
Se-Myong Chang ◽  
Taegee Min

In this research, unsteady three-dimensional incompressible Navier–Stokes equations are solved to simulate experiments with the Boussinesq approximation and validate the proposed numerical model for the design of a circular fin-tube heat exchanger. Unsteady time marching is proposed for a time sweeping analysis of various Rayleigh numbers. The accuracy of the natural convection data of a single horizontal circular tube with the proposed numerical method can be guaranteed when the Rayleigh number based on the tube diameter exceeds 400, which is regarded as the limitation of numerical errors due to instability. Moreover, the effective limit for a circular fin-tube heat exchanger is reached when the Rayleigh number based on the fin gap size ( Ra s ) is equal to or exceeds 100. This is because at low Rayleigh numbers, the air gap between the fins is isolated and rarely affected by natural convection of the outer air, where the fluid provides heat resistance. Thus, the fin acts favorably when Ra s exceeds 100.


Sign in / Sign up

Export Citation Format

Share Document