Design and analysis of cooling co-generation cycle using aqua-ammonia as working fluid

2020 ◽  
Vol 20 ◽  
pp. 100744
Author(s):  
R. Shankar ◽  
T. Srinivas ◽  
B. Anand ◽  
S. Murugavelh ◽  
W. Rivera
2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


2001 ◽  
Author(s):  
K. Bartlett ◽  
J. Phipps ◽  
K. Kulhankova ◽  
P. Thorne
Keyword(s):  

Author(s):  
Abhijit A. Adoni ◽  
Amrit Ambirajan ◽  
Jasvanth V. S. ◽  
D. Kumar ◽  
Pradip Dutta

2018 ◽  
Vol 49 (17) ◽  
pp. 1721-1744 ◽  
Author(s):  
Adnan Sözen ◽  
Erdem Çiftçi ◽  
Selçuk Keçel ◽  
Metin Gürü ◽  
Halil Ibrahim Variyenli ◽  
...  

2011 ◽  
Vol 18 (3) ◽  
pp. 239-247 ◽  
Author(s):  
Jiafei Zhao ◽  
Mingjiang Ni ◽  
Chunhui Shou ◽  
Yanmei Zhang ◽  
Wei Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document