High efficiency green phosphorescent organic light emitting device with (TCTA/TCTA0.5TPBi0.5/TPBi): Ir(ppy)3 emission layer

2009 ◽  
Vol 517 (14) ◽  
pp. 4122-4126 ◽  
Author(s):  
J.G. Jang ◽  
H.K. Shin
2018 ◽  
Vol 6 (40) ◽  
pp. 10793-10803 ◽  
Author(s):  
Shian Ying ◽  
Dezhi Yang ◽  
Xianfeng Qiao ◽  
Yanfeng Dai ◽  
Qian Sun ◽  
...  

High-performance WOLEDs realizing high efficiency and low efficiency roll-off simultaneously were achieved by strategically managing triplet excitons in the emission layer.


2016 ◽  
Vol 220 ◽  
pp. 329-333 ◽  
Author(s):  
Runda Guo ◽  
Shiming Zhang ◽  
Shouzhen Yue ◽  
Pingrui Yan ◽  
Yukun Wu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Woo Kang ◽  
Dong-Hyun Baek ◽  
Byeong-Kwon Ju ◽  
Young Wook Park

AbstractIn this study, we report highly efficient green phosphorescent organic light-emitting diodes (OLEDs) with ultra-thin emission layers (EMLs). We use tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3), a green phosphorescent dopant, for creating the OLEDs. Under systematic analysis, the peak external quantum efficiency (EQE) of an optimized device based on the ultra-thin EML structure is found to be approximately 24%. This result is highest EQE among ultra-thin EML OLEDs and comparable to the highest efficiency achieved by OLEDs using Ir(ppy)3 that are fabricated via conventional doping methods. Moreover, this result shows that OLEDs with ultra-thin EML structures can achieve ultra-high efficiency.


2021 ◽  
Vol 21 (8) ◽  
pp. 4179-4184
Author(s):  
Shin Woo Kang ◽  
Dong-Hyun Baek ◽  
Byeong-Kwon Ju ◽  
Young Wook Park

In the research of organic light-emitting diodes (OLEDs), the OLEDs that are fabricated via conventional doping methods have complicated structures and fabrication processes. To overcome these limitations, the ultra-thin emission layer (EML) method, which adopts a simple structure has been effectively used in the research of OLEDs. However, studies on white color OLEDs (WOLEDs) fabricated using the ultra-thin EML method are scarce. In this paper, we report the results of color tuning for the realization of WOLEDs based on an ultra-thin EML structure. The WOLEDs were fabricated and evaluated based on a two-color dopant system (sky-blue dopant and yellow dopant). The fabricated WOLEDs exhibited color coordinates of the International Commission on Illumination (CIE) 1931 from (0.287, 0.436) to (0.486, 0.483) according to the thickness ratio of the two dopants. This result suggests that the WOLEDs color tuned with multi-color dopants can be fabricated based on the ultra-thin EML method, and the development of WOLEDs with high efficiency and stability can be attained in the future.


Sign in / Sign up

Export Citation Format

Share Document