A nine-legged tick: Report of a morphological anomaly in the blacklegged tick, Ixodes scapularis (Acari: Ixodidae) from the northeastern United States

2018 ◽  
Vol 9 (4) ◽  
pp. 778-780 ◽  
Author(s):  
Goudarz Molaei ◽  
Eliza A.H. Little
EDIS ◽  
1969 ◽  
Vol 2003 (14) ◽  
Author(s):  
Michael R. Patnaude ◽  
Thomas N. Mather

In the United States, the blacklegged tick, Ixodes scapularis Say affects the greatest number of people for threeprincipal reasons: their geographic distribution coincides in the northeastern United States with the greatest concentration of humans (Miller et al. 1990); spirochete infection rates are high, often exceeding 25 (Burgdorfer et al. 1982, Anderson et al. 1983, Magnarelli et al. 1986); and the geographical range of the tick is spreading (Lastavica et al. 1989, Anderson et al. 1990, Godsey et al. 1987, Davis et al. 1984). This document is EENY-143, one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: July 2000. Revised: June 2003. EENY-143/IN300: Blacklegged Tick or Deer Tick, Ixodes scapularis Say (Arachnida: Acari: Ixodidae) (ufl.edu)


2019 ◽  
Vol 57 (1) ◽  
pp. 304-307 ◽  
Author(s):  
Ryan T Larson ◽  
Xia Lee ◽  
Tela Zembsch ◽  
Gebbiena M Bron ◽  
Susan M Paskewitz

Abstract The blacklegged tick, Ixodes scapularis Say, is the primary Lyme disease vector in the eastern United States. Both immature stages of I. scapularis take blood meals from mice belonging to the genus Peromyscus. Mice are active during the night and spend the majority of diel periods in nests. Thus, immature I. scapularis have a greater opportunity to drop from Peromyscus hosts while in nests compared with the forest floor. Here, we collected 11 Peromyscus nests during a 3-mo period during which the immature I. scapularis are known to be active. We then examined nesting materials for the presence of I. scapularis. Immature I. scapularis were detected in 64% of Peromyscus nests examined. Additionally, 55% of the nests contained at least one Dermacentor variabilis Say larva. Eighty-seven percent of all larval ticks found within nests were blood-fed. Because Peromyscus spp. are highly competent reservoirs of numerous tick-borne pathogens, the ticks that detach in their nests may be important for the maintenance of tick-borne diseases. However, further studies are needed to determine the fate of the I. scapularis that detach in Peromyscus nests.


Author(s):  
Jonathan M Winter ◽  
Trevor F Partridge ◽  
Dorothy Wallace ◽  
Jonathan W Chipman ◽  
Matthew P Ayres ◽  
...  

Abstract The prevalence of Lyme disease and other tick-borne diseases is dramatically increasing across the United States. While the rapid rise in Lyme disease is clear, the causes of it are not. Modeling Ixodes scapularis Say (Acari: Ixodidae), the primary Lyme disease vector in the eastern United States, presents an opportunity to disentangle the drivers of increasing Lyme disease, including climate, land cover, and host populations. We improved upon a recently developed compartment model of ordinary differential equations that simulates I. scapularis growth, abundance, and infection with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) by adding land cover effects on host populations, refining the representation of growth stages, and evaluating output against observed data. We then applied this model to analyze the sensitivity of simulated I. scapularis dynamics across temperature and land cover in the northeastern United States. Specifically, we ran an ensemble of 232 simulations with temperature from Hanover, New Hampshire and Storrs, Connecticut, and land cover from Hanover and Cardigan in New Hampshire, and Windsor and Danielson in Connecticut. Consistent with observations, simulations of I. scapularis abundance are sensitive to temperature, with the warmer Storrs climate significantly increasing the number of questing I. scapularis at all growth stages. While there is some variation in modeled populations of I. scapularis infected with B. burgdorferi among land cover distributions, our analysis of I. scapularis response to land cover is limited by a lack of observations describing host populations, the proportion of hosts competent to serve as B. burgdorferi reservoirs, and I. scapularis abundance.


Author(s):  
Daniel C Mathisson ◽  
Sara M Kross ◽  
Matthew I Palmer ◽  
Maria A Diuk-Wasser

Abstract Tick-borne illnesses have been on the rise in the United States, with reported cases up sharply in the past two decades. In this literature review, we synthesize the available research on the relationship between vegetation and tick abundance for four tick species in the northeastern United States that are of potential medical importance to humans. The blacklegged tick (Ixodes scapularis) (Say; Acari: Ixodidae) is found to be positively associated with closed canopy forests and dense vegetation thickets, and negatively associated with open canopy environments, such as grasslands or old agricultural fields. The American dog tick (Dermacentor variabilis) (Say; Acari: Ixodidae) has little habitat overlap with I. scapularis, with abundance highest in grasses and open-canopy fields. The lone star tick (Amblyomma americanum) (Linnaeus; Acari: Ixodidae) is a habitat generalist without consistent associations with particular types of vegetation. The habitat associations of the recently introduced Asian longhorned tick (Haemaphysalis longicornis) (Neumann; Acari: Ixodidae) in the northeastern United States, and in other regions where it has invaded, are still unknown, although based on studies in its native range, it is likely to be found in grasslands and open-canopy habitats.


Sign in / Sign up

Export Citation Format

Share Document