Ultimate load analysis of thin-walled box beams considering shear lag effect

2004 ◽  
Vol 42 (8) ◽  
pp. 1199-1210 ◽  
Author(s):  
Yaping Wu ◽  
Shaoshui Yu ◽  
Chonghui Shi ◽  
Jianjun Li ◽  
Yuanming Lai ◽  
...  
1990 ◽  
Vol 116 (5) ◽  
pp. 1306-1318 ◽  
Author(s):  
Qi‐gen Song ◽  
Alexander C. Scordelis

2011 ◽  
Vol 117-119 ◽  
pp. 858-861
Author(s):  
Ya Ping Wu ◽  
Zhi Xiang Zha ◽  
Li Xia Wang ◽  
Yin Hui Wang

With the features of high efficiency, low consumption and good mechanical characteristic, thin-walled composite box beams have been broadly adopted in structural engineering, and its mechanical behavior has became an active research area. As shear lag effect can bring an uneven normal stress distribution on the flanges, it would remarkably affect the strength design of thin-walled beams. This paper focuses on the experimental investigations of shear lag effects in [0o∕±45o2∕ 0o]T laminated box beam under concentrated loads, and test results indicates that the shear lag effect in this composite box beam can be simulated by the two parabola.


2004 ◽  
Vol 42 (5) ◽  
pp. 741-757 ◽  
Author(s):  
Q.Z. Luo ◽  
J. Tang ◽  
Q.S. Li ◽  
G.D. Liu ◽  
J.R. Wu

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zuolong Luo ◽  
Haoyun Yuan ◽  
Xirong Niu

The thin-walled box girder (T-WBG) is widely applied in the long-span bridge structures during the past decades due to its lighter self-weight and better mechanical properties. The shear lag effect (SLE), an essential aspect of T-WBG which governs the stress and the deformation, is rather necessary to be revealed properly. The extraordinary issue of T-WBG analysis nowadays is the SLE impact on its dynamical response to external load. This paper proposes an improved finite element method (FEM) to obtain the realistic vibration characteristics of the T-WBG considering the SLE by theory analysis and formula derivation. Firstly, based on the classical plate and shell theory as well as beam theory, the T-WBG was divided into shell subunit for the roof and beam subunit for web and floor, respectively. Secondly, a 3-order polynomial which is consistent with the experiment results was adopted as the axial-displacement interpolation function of the roof subunit, whose nodal displacements parameters were also taken as the basic. Thirdly, the nodal displacement parameters of the web subunit and floor subunit were deduced by the basic according to the principle of deflection consistency. It is shown through a numerical example that the proposed method is much more economical to achieve reasonable accuracy than traditional FEM analysis software when dealing with the free vibration problem of the T-WBG considering the SLE. Besides, it is also observed that the natural frequency values considering the SLE have a trend of decreasing markedly in general, and the influence of SLE on higher-order frequency is more significant than on the lower one under the boundary condition of cantilever supported, while a contrary effect under the boundary condition of simple supported.


2011 ◽  
Vol 181-182 ◽  
pp. 857-860 ◽  
Author(s):  
Qiang Su ◽  
Ya Ping Wu

In this paper, the differential equations of box beams are established based on the principle of minimum potential energy and the variational method. The elastic stiffness matrix and geometric stiffness matrix considering shear lag and compression-flexure effects are induced in this paper. And a finite element program is developed. Then the influence of compression-flexure effects to shear lag effect of box beam is analyzed.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xiayuan Li ◽  
Shui Wan ◽  
Kongjian Shen ◽  
Peng Zhou ◽  
Xiao Wang

In this study, an effective and accurate theoretical analysis method for predicting the shear lag effect in the thin-walled single-box multicell box girder is presented. The modifications of longitudinal warping displacement functions at the flanges are fully investigated, including the shear lag width (bij) of flanges, the coefficients (αij) of shear lag warping functions, the deformation compatibility conditions in flanges, and the internal force balance (D). The initial shear deformation (γ03) in the top lateral cantilever flanges is innovatively introduced in multicell box girders and obtained by the designed procedure. In addition, the transverse distribution function for describing the longitudinal warping displacement is deduced and expressed in the form of the cosine function. Based on the principle of minimum potential energy, the governing differential equations are derived and solved with the associated boundary and load conditions. The accuracy and applicability of the proposed method (SL-THY2) are validated for four thin-walled single-box multicell (two- and three-cell) box girders with the results derived from the solid finite element method.


Sign in / Sign up

Export Citation Format

Share Document