Experimental and numerical analysis on the structural behaviour of cold-formed steel beams

2013 ◽  
Vol 72 ◽  
pp. 1-13 ◽  
Author(s):  
Luís Laím ◽  
João Paulo C. Rodrigues ◽  
Luis Simões da Silva
2018 ◽  
Vol 21 (16) ◽  
pp. 2534-2552 ◽  
Author(s):  
Pinelopi Kyvelou ◽  
Chi Hui ◽  
Leroy Gardner ◽  
David A Nethercot

Cold-formed steel purlin systems with overlapped or sleeved connections are alternatives to continuous two-span systems and exhibit different degrees of continuity. Both connection types are highly favourable in practice since they are both strategically placed over an interior support to provide additional moment resistance and rotational capacity where the corresponding demands are at their largest, thus improving the overall structural efficiency. Until recently, full-scale testing has been the most common way of investigating the structural behaviour of such systems. In this study, numerical modelling, capable of capturing the complex contact interactions and instability phenomena, is employed. The developed finite element models are first validated against data from physical tests on cold-formed steel beams featuring sleeved and overlapped connections that have been previously reported in the literature. Following their validation, the models are employed for parametric studies, based on which the structural behaviour of the examined systems is explored, while the applicability of conventional plastic design as well as of a previously proposed design approach is investigated. Finally, the efficiency of these systems in terms of load-carrying capacity is compared with their equivalent continuous two-span systems.


2016 ◽  
Vol 7 (4) ◽  
pp. 388-402 ◽  
Author(s):  
Luis Laím ◽  
João Paulo C. Rodrigues

Purpose This paper is mainly aimed at the structural performance of compound cold-formed galvanised steel beams under fire conditions based on the results of a large programme of experimental tests and numerical simulations. The main objective of this research was to assess the critical temperature and time of the studied beams. Other important goals of this research work were to investigate the influence of the cross-sections (C, lipped-I, R and 2R beams) and, above all, of the axial restraint (0, 0.45, 3, 7.5, 15, 30, ∞ kN/mm) to the thermal elongation of the beam and the rotational restraint at beam supports (0, 15, 80, 150, 300, 1,200 and ∞ kN.m/rad) on the fire resistance of this kind of beams. Design/methodology/approach This paper still provides details of the simulation methodology for achieving numerical stability and faithful representation of detailed structural behaviour and compares the simulation and experimental results, including beam failure modes, measured beam axial forces and beam mid-span deflections. Findings Good agreement between Abaqus simulations and experimental observations confirms that the finite element models developed with the Abaqus/standard solver are suitable for predicting the structural fire behaviour of restrained cold-formed steel beams. Originality/value The results showed above all that the effect of the stiffness of the surrounding structure seems to decrease with the increasing slenderness of the beams.


ce/papers ◽  
2019 ◽  
Vol 3 (3-4) ◽  
pp. 205-210
Author(s):  
Gatheeshgar Perampalam ◽  
Keerthan Poologanathan ◽  
Shanmuganathan Gunalan ◽  
Jun Ye ◽  
Brabha Nagaratnam

2020 ◽  
Vol 13 (4) ◽  
pp. 294-304 ◽  
Author(s):  
Perampalam Gatheeshgar ◽  
Keerthan Poologanathan ◽  
Shanmuganathan Gunalan ◽  
Brabha Nagaratnam ◽  
Konstantinos Daniel Tsavdaridis ◽  
...  

2014 ◽  
Vol 74 ◽  
pp. 104-117 ◽  
Author(s):  
Luís Laím ◽  
João Paulo C. Rodrigues ◽  
Luis Simões da Silva

2021 ◽  
Vol 164 ◽  
pp. 107831
Author(s):  
Mahmoud Hosseinpour ◽  
Mehran Zeynalian ◽  
Abdoreza Ataei ◽  
Maryam Daei

2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Nahushananda Chakravarthy ◽  
Sivakumar Naganathan ◽  
Jonathan Tan Hsien Aun ◽  
Sreedhar Kalavagunta ◽  
Kamal Nasharuddin Mustapha ◽  
...  

Cold formed steel differ from hot rolled steel by its lesser thickness and weight. The cold formed steel applicable in roof purlin, pipe racks and wall panels etc. Due its lesser wall thickness the cold formed steel member subjected to buckling. The enhancement of load carrying capacity of the cold formed steel member can be achieved by external strengthening of CFRP. In this study cold formed channel members connected back to back to form I shaped cross section using screws. These built up beam members were 300mm, 400mm and 500mm in length with 100mm screw spacing and edge distance of 50mm were chosen for testing. CFRP fabric cut according to length, width of built up beams and wrapped outer surface of beam using epoxy resin. Experiments were carried out in two sets firstly plain built up beams and secondly CFRP wrapped beams. The test results shows that increased load carrying capacity and reduction in deflection due to CFRP strengthening. Experimental results were compared with AISI standards which are in good agreement. Experimental results shows that CFRP strengthening is economic and reliable.


Sign in / Sign up

Export Citation Format

Share Document