Numerical analysis of non-restrained long-span steel beams at high temperatures due to fire

2018 ◽  
Vol 20 (2) ◽  
pp. 261-267
Author(s):  
Abdelhak Kada ◽  
Belkacem Lamri
2020 ◽  
Vol 157 ◽  
pp. 106988 ◽  
Author(s):  
Lin Liang ◽  
XiaoZhen Li ◽  
Jing Zheng ◽  
KangNing Lei ◽  
Hongye Gou

2021 ◽  
Vol 25 (3) ◽  
pp. 854-865
Author(s):  
Hao Wang ◽  
Zidong Xu ◽  
Min Yang ◽  
Tianyou Tao ◽  
Jianxiao Mao ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 142-153
Author(s):  
Ahmadreza Khodabandehlo ◽  
Mohamad Taghi Kazemi

AbstractWith spreading of population and increasing of instruction, and also because of limited resources and materials, the demand for using novel materials in building industry has increased. The reinforced concrete columns and steel beams are used in structures with composite moment frame (RCS). Use of compression strength in proportion with concrete and bending strength of steel beam has bestowed these structures less weight than that of concrete structures and made it easier to access the measure of strong column - weak beam especially within long span in these structures. The most important part of these structures is connection of steel beam with the reinforced concrete column. These connections are divided into two general groups of connection with bracing beam and with bracing column from the joint. This paper aims to study the seismic behavior and parameters of RCS composite frame composed of steel beams and strong concrete column. The finite element method was analyzed by ABAQUS software and data analyzed by Excel.


2018 ◽  
Vol 195 ◽  
pp. 02008
Author(s):  
Yanuar Setiawan ◽  
Ay Lie Han ◽  
Buntara Sthenly Gan ◽  
Junaedi Utomo

The use of castellated beams has become more popular in the last two decades. The main idea for the use of these types of steel beams is to reduce their self-weight by providing openings in the web of wide flange (WF) or I sections. Numerous research on castellated beams has been conducted, the majority of the studies aimed to optimize the opening size and the shape configuration of the openings. A numerical analysis of castellated beams with oval openings was performed in this study. The sections under investigation had variations in the height-to-length ratios of the beam. The Do to D and b to Do ratios were kept at a constant. The D value was defined as the height of the beam, while Do is the height of the opening, and b is the width of the opening. The numerical analysis was performed by the finite element analysis using the STRAND7 software. The numerical model was further validated to the experimental data. The results showed that the developed finite element model resulted in a very good representation to the actual behavior of the sections.


Author(s):  
Ali Alskeif ◽  
Ian W. Burgess ◽  
Shan-Shan Huang

<p>The mechanics of tensile membrane action of thinlightly-reinforced concrete slabs has been re-examined during the last two years.The re-examination is based on large-deflection plastic yield-line analysis, applied to flat slabs. As deflection increases beyond the optimum yield-line pattern, tensile membrane action is mobilized and further load carrying capacity is provided. This paper represents an extension of this re-examination to include composite slabs at high temperatures. As temperature increases, the unprotected downstand steel beams significantly lose capacity, allowing for further deflection until the overall capacity degrades to the applied load. Tensile membrane action then allows further increase of steel temperature until a maximum is reached.</p>


2011 ◽  
Vol 183-185 ◽  
pp. 1933-1937
Author(s):  
Dan Lv ◽  
Yi Feng Zheng ◽  
Qun Zhao

Most of steel beams in midspan bottom slab are fixed up following the shape of girder bottom edge with both ends anchoring to the bottom slab wedge. Due to the girder of long-span continuous rigid-frame bridge has variable cross section, the shape of steel beams in midspan bottom slab presents a curve opening downward, which does harm to the girder. Arranging steel beams along straight line in the bottom slab with both ends anchoring to the top wedge is better for girder to carry load. The analysis results of two methods analyzed by FEM shows that arranging of straight line lowers the stress of the top edge of girder meanwhile it increases the stress of bottom slab edge. Besides, the method lowers pressure stress and shear stress of the height middle of the girder where the steel beam anchoring and increases the main tension stress reservation which is good for the girder to carry load.


Sign in / Sign up

Export Citation Format

Share Document