An integrated moving element method (IMEM) for hydroelastic analysis of infinite floating Kirchhoff-Love plates under moving loads in a shallow water environment

2020 ◽  
Vol 155 ◽  
pp. 106934 ◽  
Author(s):  
J.N. Reddy ◽  
Xuan Vu Nguyen ◽  
Tan Ngoc Than Cao ◽  
Qui X. Lieu ◽  
Van Hai Luong
2020 ◽  
Vol 10 (7) ◽  
pp. 2393
Author(s):  
Chengxi Li ◽  
Jijian Lian

Because of the complexities associated with the domain geometry and environments, accurate prediction of acoustics propagation and scattering in realistic shallow water environments by direct numerical simulation is challenging. Based on the pre-corrected Fast Fourier Transform (PFFT) method, we accelerated the classical boundary element method (BEM) to predict the acoustic propagation in a multi-layer shallow water environment. The classical boundary element method formulate the acoustics propagation problem as a linear equation system in the form of [A]{x}={b}, where [A] is an N×N dense matrix composed of influence coefficients. Solving such linear equation system requires O(N2/N3) computational cost for iterative/direct methods. The developed method, PFFT-BEM, can effectively reduce the computational efforts for direct numerical simulations from O(N2~3) to O(Nlog N), where N is the total number of boundary unknowns. To numerically simulate the sound propagation in a shallow water environment, we applied the first-order non-reflecting boundary condition in the truncated numerical domain boundary to eliminate the errors due to reflected waves. Multi-layer coupled formulation was used to include the environment inhomogeneity in PFFT-BEM. Through multiple convergence tests on the number of layers and elements, we validated and quantified the accuracy of PFFT-BEM. To demonstrate the usefulness and capability of the developed PFFT-BEM, we simulated three-dimensional (3D) underwater sound propagation through 3D geometries to check the efficacy of the established classical method: the 3D Parabolic equation model. Finally, PFFT-BEM was employed to simulate sound propagation through a complex multi-layer shallow water environment with internal waves. The “3D+T” results obtained by PFFT-BEM compared well with the physical test, thereby proving the capability and correctness of this method.


2011 ◽  
Vol 45 (3) ◽  
pp. 69-76 ◽  
Author(s):  
Tom Fedenczuk ◽  
Eva-Marie Nosal

AbstractShallow water acoustics provide a means for monitoring and surveillance of near-shore environments. This paper describes the current and future capabilities of the low- to high-frequency Hawaii Experimental Acoustics Range (HEAR) that was designed to facilitate a wide range of different shallow water acoustics experiments and allow researchers from various institutions to test various array components and configurations. HEAR is a portable facility that consists of multiple hydrophones (12‐16) cabled independently to a common central node. The design allows for variable array configurations and deployments in three modes: experimental (off boats and piers), autonomous, and cabled. An application of HEAR is illustrated by the results from a deployment at Makai Research Pier, Oahu, Hawaii. In this deployment, HEAR was configured as a long-baseline range of two volumetric subarrays to study passive acoustic tracking capabilities in a shallow water environment.


2008 ◽  
Vol 124 (3) ◽  
pp. EL157-EL162 ◽  
Author(s):  
D. P. Knobles ◽  
S. M. Joshi ◽  
R. D. Gaul ◽  
H. C. Graber ◽  
N. J. Williams

1995 ◽  
Vol 69 (2) ◽  
pp. 376-380 ◽  
Author(s):  
Daniel B. Blake ◽  
Keith Sturgeon

Aldebarania arenitea (Astropectinidae; Asteroidea; Echinodermata) is described from the Rocky Point Member of the Maastrichtian (Upper Cretaceous) Peedee Formation of North Carolina. A turbulent, shallow-water environment is suggested by sedimentary features, a diverse marine fauna, and the morphology of Aldebarania. Aldebarania appears to be a partial ecological equivalent of living Astropecten and Luidia; however, phylogenetic relationships within the Astropectinidae are unstudied and the origin of similarities is unknown.


Author(s):  
Zhiyi Zhou ◽  
Gongzheng Yin ◽  
Ronald P. Tripp

ABSTRACTTwenty-seven species assigned to 20 genera of trilobites are described from Feilaishi in Guizhou Province, the type section of the Shihtzupu Formation in S W China. They occur in association with a sparse graptolite fauna including Glyptograptus teretiusculus. Eleven taxa are recorded here for the first time. Much new morphological information is provided regarding previously known species and 3 lectotypes are selected. The trilobites are largely endemic and indicate a quiet and comparatively shallow water environment


2016 ◽  
Author(s):  
Mirko Mustonen ◽  
Aleksander Klauson ◽  
Janek Laanearu ◽  
Madis Ratassepp ◽  
Thomas Folegot ◽  
...  

Energies ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 1414 ◽  
Author(s):  
Umberta Tinivella ◽  
Michela Giustiniani ◽  
Ivan Vargas-Cordero

Sign in / Sign up

Export Citation Format

Share Document