Nonlinear strain gradient forced vibration analysis of shear deformable microplates via hermitian finite elements

2021 ◽  
Vol 161 ◽  
pp. 107515 ◽  
Author(s):  
Anton Timoshin ◽  
Amirreza Kazemi ◽  
Mohsen Heydari Beni ◽  
Jafar Eskandari Jam ◽  
Binh Pham
2017 ◽  
Vol 24 (20) ◽  
pp. 4700-4715 ◽  
Author(s):  
Mohammad Reza Barati ◽  
Hossein Shahverdi

Forced vibration analysis of porous functionally graded nanoplates under uniform dynamic loads is performed based on generalized nonlocal strain gradient theory. In this model, both stiffness-softening and stiffness-hardening effects are considered for more reliable forced vibration analysis of nanoplates. The present model is based on a vibrating higher order nanoscale plate subjected to transverse uniform dynamic load. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. According to t Hamilton’s principle, the formulation of dynamically loaded nanoplate is derived. Applying Galerkin’s method, the resonance frequencies and dynamic deflections are obtained. It is indicated that the forced vibration characteristics of the nanoplate are significantly influenced by the porosities, excitation frequency, nonlocal parameter, strain gradient parameter, material gradation, elastic foundation and dynamic load location.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Trung Thanh Tran ◽  
Van Ke Tran ◽  
Pham Binh Le ◽  
Van Minh Phung ◽  
Van Thom Do ◽  
...  

This paper carries out forced vibration analysis of graphene nanoplatelet-reinforced composite laminated shells in thermal environments by employing the finite element method (FEM). Material properties including elastic modulus, specific gravity, and Poisson’s ratio are determined according to the Halpin–Tsai model. The first-order shear deformation theory (FSDT), which is based on the 8-node isoparametric element to establish the oscillation equation of shell structure, is employed in this work. We then code the computing program in the MATLAB application and examine the verification of convergence rate and reliability of the program by comparing the data of present work with those of other exact solutions. The effects of both geometric parameters and mechanical properties of materials on the forced vibration of the structure are investigated.


2020 ◽  
Vol 243 ◽  
pp. 112249 ◽  
Author(s):  
Peilin Fu ◽  
Jianghong Yuan ◽  
Xu Zhang ◽  
Guozheng Kang ◽  
Ping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document