Haar wavelet method for frequency analysis of the combined functionally graded shells with elastic boundary condition

2021 ◽  
Vol 169 ◽  
pp. 108340
Author(s):  
Kwanghun Kim ◽  
Dongil Choe ◽  
Songhun Kwak ◽  
Yongho Ri ◽  
Choljun Kim
2018 ◽  
Vol 3 (2) ◽  
pp. 447-458 ◽  
Author(s):  
S.C. Shiralashetti ◽  
H. S. Ramane ◽  
R.A. Mundewadi ◽  
R.B. Jummannaver

AbstractIn this paper, a comparative study on Haar wavelet method (HWM) and Hosoya Polynomial method(HPM) for the numerical solution of Fredholm integral equations. Illustrative examples are tested through the error analysis for efficiency. Numerical results are shown in the tables and figures.


2020 ◽  
Author(s):  
Jüri Majak ◽  
Mart Ratas ◽  
Kristo Karjust ◽  
Boris Shvartsman

The study is focused on the development, adaption and evaluation of the higher order Haar wavelet method (HOHWM) for solving differential equations. Accuracy and computational complexity are two measurable key characteristics of any numerical method. The HOHWM introduced recently by authors as an improvement of the widely used Haar wavelet method (HWM) has shown excellent accuracy and convergence results in the case of all model problems studied. The practical value of the proposed HOHWM approach is that it allows reduction of the computational cost by several magnitudes as compared to HWM, depending on the mesh and the method parameter values used.


Sign in / Sign up

Export Citation Format

Share Document