scholarly journals Detection of MPTP-Induced Substantia Nigra Hyperechogenicity in Rhesus Monkeys by Transcranial Ultrasound

2010 ◽  
Vol 36 (4) ◽  
pp. 604-609 ◽  
Author(s):  
Thyagarajan Subramanian ◽  
Christopher A. Lieu ◽  
Kumaraswamy Guttalu ◽  
Daniela Berg
2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
J Thiermann ◽  
M Obermann ◽  
M Küper ◽  
O Kastrup ◽  
Ö Yaldizli ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 645
Author(s):  
Andrea Guerra ◽  
Edoardo Vicenzini ◽  
Ettore Cioffi ◽  
Donato Colella ◽  
Antonio Cannavacciuolo ◽  
...  

Recent evidence indicates that transcranial ultrasound stimulation (TUS) modulates sensorimotor cortex excitability. However, no study has assessed possible TUS effects on the excitability of deeper brain areas, such as the brainstem. In this study, we investigated whether TUS delivered on the substantia nigra, superior colliculus, and nucleus raphe magnus modulates the excitability of trigeminal blink reflex, a reliable neurophysiological technique to assess brainstem functions in humans. The recovery cycle of the trigeminal blink reflex (interstimulus intervals of 250 and 500 ms) was tested before (T0), and 3 (T1) and 30 min (T2) after TUS. The effects of substantia nigra-TUS, superior colliculus-TUS, nucleus raphe magnus-TUS and sham-TUS were assessed in separate and randomized sessions. In the superior colliculus-TUS session, the conditioned R2 area increased at T1 compared with T0, while T2 and T0 values did not differ. Results were independent of the interstimulus intervals tested and were not related to trigeminal blink reflex baseline (T0) excitability. Conversely, the conditioned R2 area was comparable at T0, T1, and T2 in the nucleus raphe magnus-TUS and substantia nigra-TUS sessions. Our findings demonstrate that the excitability of brainstem circuits, as evaluated by testing the recovery cycle of the trigeminal blink reflex, can be increased by TUS. This result may reflect the modulation of inhibitory interneurons within the superior colliculus.


2011 ◽  
Vol 26 (5) ◽  
pp. 885-888 ◽  
Author(s):  
Norbert Brüggemann ◽  
Johann Hagenah ◽  
Kaili Stanley ◽  
Christine Klein ◽  
Cuiling Wang ◽  
...  

2019 ◽  
Vol 28 (4) ◽  
pp. 379-387
Author(s):  
Scott C. Vermilyea ◽  
Scott Guthrie ◽  
Iliana Hernandez ◽  
Viktorya Bondarenko ◽  
Marina E. Emborg

α-Synuclein (α-syn) is a small presynaptic protein distributed ubiquitously in the central and peripheral nervous system. In normal conditions, α-syn is found in soluble form, while in Parkinson’s disease (PD) it may phosphorylate, aggregate, and combine with other proteins to form Lewy bodies. The purpose of this study was to evaluate, in nonhuman primates, whether α-syn expression is affected by age and neurotoxin challenge. Young adult ( n = 5, 5–10 years old) and aged ( n = 4, 23–25 years old) rhesus monkeys received a single unilateral carotid artery injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Three months post-MPTP the animals were necropsied by transcardiac perfusion, and their brains extracted and processed with immunohistochemical methods. Quantification of tyrosine hydroxylase (TH)-positive substantia nigra (SN) neurons showed a significant 80–89% decrease in the side ipsilateral to MPTP administration in young and old animals. Optical density of TH- immunoreactivity (-ir) in the caudate and putamen presented a 60–70% loss compared with the contralateral side. α-Syn-ir was present in both ipsi- and contra- lateral MPTP-treated nigra, caudate, and putamen, mostly in fibers; its intracellular distribution was not affected by age. Comparison of α-syn-ir between MPTP-treated young and aged monkeys revealed significantly higher optical density for both the ipsi- and contralateral caudate and SN in the aged animals. TH and α-syn immunofluorescence confirmed the loss of nigral TH-ir dopaminergic neurons in the MPTP-treated side of intoxicated animals, but bilateral α-syn expression. Colabeling of GAD67 and α-syn immunofluorescence showed that α-syn expression was present mainly in GABAergic fibers. Our results demonstrate that, 3 months post unilateral intracarotid artery infusion of MPTP, α-syn expression in the SN is largely present in GABAergic fibers, regardless of age. Bilateral increase of α-syn expression in SN fibers of aged, compared with young rhesus monkeys, suggests that α-syn-ir may increase with age, but not after neurotoxin-induced dopaminergic nigral cell loss.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Juan F. Vázquez-Costa ◽  
José I. Tembl ◽  
Victoria Fornés-Ferrer ◽  
Fernando Cardona ◽  
Lluis Morales-Caba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document