Usefulness of Real-Time Elastography Strain Ratio in the Assessment of Bile Duct Ligation-Induced Liver Injury and the Hepatoprotective Effect of Chitosan: An Experimental Animal Study

2015 ◽  
Vol 41 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Marina Dudea ◽  
Simona Clichici ◽  
Diana Elena Olteanu ◽  
Andras Nagy ◽  
Maria Cucoş ◽  
...  
2009 ◽  
Vol 47 (01) ◽  
Author(s):  
P Nalapareddy ◽  
S Schüngel ◽  
MP Manns ◽  
H Jaeschke ◽  
A Vogel

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Guiyang Wang ◽  
Peng Xiu ◽  
Fu Li ◽  
Cheng Xin ◽  
Kewei Li

Aim. To investigate the role of vitamin A in liver damage induced by bile duct ligation (BDL) in rats.Methods. Thirty male Wistar rats were randomly divided into three groups: SHAM group, BDL group, and BDL + VitA group . The concentrations of retinol and retinyl palmitate in the liver were analyzed using HPLC, and liver function was evaluated by the level of TBIL, ALT, AST, and ALP in serum. Hepatic oxidative status was estimated by measuring T-SOD, CAT, GSH, MDA, and AOPP. Nrf2 expression was assessed using immunohistochemistry and western blotting, and EMSA was performed to determine Nrf2 DNA-binding activity. The expression of the downstream factors such as Ho1 and Nqo1 was also examined using immunohistochemistry and western blotting assays.Results. Vitamin A treatment restored levels of retinoids in liver, improved liver function, alleviated oxidative stress, and facilitated the translocation of Nrf2 to the nucleus in the experimental obstructive jaundice. Vitamin A was also found to increase the expression of Nrf2 downstream proteins such as Ho1 and Nqo1.Conclusion. Vitamin A was here found to ameliorate cholestatic liver injury. This effect may be related to the activation of Nrf2/ARE pathway in bile duct ligation rats.


2018 ◽  
Vol 19 (9) ◽  
pp. 2634 ◽  
Author(s):  
Anna Croce ◽  
Giovanni Bottiroli ◽  
Laura Di Pasqua ◽  
Clarissa Berardo ◽  
Veronica Siciliano ◽  
...  

While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.


2019 ◽  
Vol 317 (6) ◽  
pp. G773-G783 ◽  
Author(s):  
Takanori Konishi ◽  
Rebecca M. Schuster ◽  
Holly S. Goetzman ◽  
Charles C. Caldwell ◽  
Alex B. Lentsch

The CXC chemokine receptor 2 (CXCR2) is critical for neutrophil recruitment and hepatocellular viability but has not been studied in the context of cholestatic liver injury following bile duct ligation (BDL). The present study sought to elucidate the cell-specific roles of CXCR2 on acute liver injury after BDL. Wild-type and CXCR2−/− mice were subjected BDL. CXCR2 chimeric mice were created to assess the cell-specific role of CXCR2 on liver injury after BDL. SB225002, a selective CXCR2 antagonist, was administrated intraperitoneally after BDL to investigate the potential of pharmacological inhibition. CXCR2−/− mice had significantly less liver injury than wild-type mice at 3 and 14 days after BDL. There was no difference in biliary fibrosis among groups. The chemokines CXCL1 and CXCL2 were induced around areas of necrosis and biliary structures, respectively, both areas where neutrophils accumulated after BDL. CXCR2−/− mice showed significantly less neutrophil accumulation in those injured areas. CXCR2Liver+/Myeloid+ and CXCR2Liver−/Myeloid− mice recapitulated the wild-type and CXCR2-knockout phenotypes, respectively. CXCR2Liver+/Myeloid+ mice suffered higher liver injury than CXCR2Liver+/Myeloid− and CXCR2Liver−/Myeloid+; however, only those chimeras with knockout of myeloid CXCR2 (CXCR2Liver+/Myeloid− and CXCR2Liver−/Myeloid−) showed reduction of neutrophil accumulation around areas of necrosis. Daily administration of SB225002 starting after 3 days of BDL reduced established liver injury at 6 days. In conclusion, neutrophil CXCR2 guides the cell to the site of injury, while CXCR2 on liver cells affects liver damage independent of neutrophil accumulation. CXCR2 appears to be a viable therapeutic target for cholestatic liver injury. NEW & NOTEWORTHY This study is the first to reveal cell-specific roles of the chemokine receptor CXCR2 in cholestatic liver injury caused by bile duct ligation. CXCR2 on neutrophils facilitates neutrophil recruitment to the liver, while CXCR2 on liver cells contributes to liver damage independent of neutrophils. CXCR2 may represent a viable therapeutic target for cholestatic liver injury.


Hepatology ◽  
2018 ◽  
Vol 67 (4) ◽  
pp. 1441-1457 ◽  
Author(s):  
Runping Liu ◽  
Xiaojiaoyang Li ◽  
Zhiming Huang ◽  
Derrick Zhao ◽  
Bhagyalaxmi Sukka Ganesh ◽  
...  

Author(s):  
Carmen G. Tag ◽  
Sibille Sauer-Lehnen ◽  
Sabine Weiskirchen ◽  
Erawan Borkham-Kamphorst ◽  
René H. Tolba ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 66200-66211 ◽  
Author(s):  
Dandan Wei ◽  
Shanting Liao ◽  
Junsong Wang ◽  
Minghua Yang ◽  
Lingyi Kong

Bile duct ligation (BDL) induced cholestasis in rats and the treatment effects of Huang-Lian-Jie-Du decoction (HLJDD) were investigated by NMR-based metabolomics approach: biphasic feature of BDL model and bilateral adjustment of HLJDD were found.


Sign in / Sign up

Export Citation Format

Share Document