metabolomic profiling
Recently Published Documents


TOTAL DOCUMENTS

1124
(FIVE YEARS 474)

H-INDEX

63
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Fengping Liu ◽  
Jingjie Du ◽  
Qixiao Zhai ◽  
Jialin Hu ◽  
Aaron W. Miller ◽  
...  

Background and aims: Emerging studies reveal a unique bacterial community in the human bladder, with alteration of composition associated to disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease that is characterized by frequent impairment of the kidney. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between microbiome and metabolome, cytokines, and disease profiles. Methods and materials: We recruited a cohort of 50 SLE patients and 50 individually matched asymptomatic controls. We used transurethral catheterization to collect urine samples, 16S rRNA gene sequencing to profile bladder microbiomes, and LC-MS/MS to perform untargeted metabolomic profiling. Results: Compared to controls, SLE patients possessed a unique bladder microbial community and increased alpha diversity. These differences were accompanied by differences in urinary metabolomes, cytokines, and patients’ disease profiles. The SLE-enriched genera, including Bacteroides, were positively correlated with several SLE-enriched metabolites, including olopatadine. The SLE-depleted genera, such as Pseudomonas, were negatively correlated to SLE-depleted cytokines, including IL-8. Alteration of the bladder microbiome was associated with disease profile. For example, the genera Megamonas and Phocaeicola were negatively correlated with serum complement C3, and Streptococcus was positively correlated with IgG. Conclusions: Our present study reveals associations between the bladder microbiome and the urinary metabolome, cytokines, and disease phenotypes. Our results could help identify biomarkers for SLE.


2022 ◽  
Vol 8 ◽  
Author(s):  
Letizia Santinelli ◽  
Luca Laghi ◽  
Giuseppe Pietro Innocenti ◽  
Claudia Pinacchio ◽  
Paolo Vassalini ◽  
...  

Long COVID refers to patients with symptoms as fatigue, “brain fog,” pain, suggesting the chronic involvement of the central nervous system (CNS) in COVID-19. The supplementation with probiotic (OB) would have a positive effect on metabolic homeostasis, negatively impacting the occurrence of symptoms related to the CNS after hospital discharge. On a total of 58 patients hospitalized for COVID-19, 24 (41.4%) received OB during hospitalization (OB+) while 34 (58.6%) taken only the standard treatment (OB–). Serum metabolomic profiling of patients has been performed at both hospital acceptance (T0) and discharge (T1). Six months after discharge, fatigue perceived by participants was assessed by administrating the Fatigue Assessment Scale. 70.7% of participants reported fatigue while 29.3% were negative for such condition. The OB+ group showed a significantly lower proportion of subjects reporting fatigue than the OB– one (p < 0.01). Furthermore, OB+ subjects were characterized by significantly increased concentrations of serum Arginine, Asparagine, Lactate opposite to lower levels of 3-Hydroxyisobutirate than those not treated with probiotics. Our results strongly suggest that in COVID-19, the administration of probiotics during hospitalization may prevent the development of chronic fatigue by impacting key metabolites involved in the utilization of glucose as well as in energy pathways.


Symbiosis ◽  
2022 ◽  
Author(s):  
Braulio Riviezzi ◽  
Guillem Campmajó ◽  
Célica Cagide ◽  
Esther Carrera ◽  
Javier Saurina ◽  
...  

Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 214
Author(s):  
Lukasz Szczerbinski ◽  
Gladys Wojciechowska ◽  
Adam Olichwier ◽  
Mark A. Taylor ◽  
Urszula Puchta ◽  
...  

Obesity rates among children are growing rapidly worldwide, placing massive pressure on healthcare systems. Untargeted metabolomics can expand our understanding of the pathogenesis of obesity and elucidate mechanisms related to its symptoms. However, the metabolic signatures of obesity in children have not been thoroughly investigated. Herein, we explored metabolites associated with obesity development in childhood. Untargeted metabolomic profiling was performed on fasting serum samples from 27 obese Caucasian children and adolescents and 15 sex- and age-matched normal-weight children. Three metabolomic assays were combined and yielded 726 unique identified metabolites: gas chromatography–mass spectrometry (GC–MS), hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC LC–MS/MS), and lipidomics. Univariate and multivariate analyses showed clear discrimination between the untargeted metabolomes of obese and normal-weight children, with 162 significantly differentially expressed metabolites between groups. Children with obesity had higher concentrations of branch-chained amino acids and various lipid metabolites, including phosphatidylcholines, cholesteryl esters, triglycerides. Thus, an early manifestation of obesity pathogenesis and its metabolic consequences in the serum metabolome are correlated with altered lipid metabolism. Obesity metabolite patterns in the adult population were very similar to the metabolic signature of childhood obesity. Identified metabolites could be potential biomarkers and used to study obesity pathomechanisms.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sultan Zahiruddin ◽  
Abida Parveen ◽  
Washim Khan ◽  
Mohammad Ibrahim ◽  
Muzamil Y. Want ◽  
...  

The study was aimed to develop a characterized polyherbal combination as an immunomodulator containing Phyllanthus emblica L., Piper nigrum L., Withania somnifera (L.) Dunal, and Tinospora cordifolia (Willd.) Miers. Through response surface methodology (RSM), the ratio of aqueous extracts of four plant materials was optimized and comprised 49.76% of P. emblica, 1.35% of P. nigrum, 5.41% of W. somnifera, and 43.43% of T. cordifolia for optimum immunomodulatory activity. The optimized combination showed antioxidant potential and contains more than 180 metabolites, out of which gallic acid, quercetin, ellagic acid, caffeic acid, kaempferitrin, and p-coumaric acid are some common and significant metabolites found in plant extracts and in polyherbal combination. Treatment with the polyherbal combination of different doses in cyclophosphamide-induced immunosuppressed mice significantly (p < 0.01) enhanced the subsets of immune cells such as natural killer (NK) cells (60%), B cells (18%), CD4 cells (14%), and CD8 cells (7%). The characterized polyherbal combination exhibited potent immunomodulatory activity, which can be further explored clinically for its therapeutic applicability.


2022 ◽  
Author(s):  
Justin McKetney ◽  
Conor C. Jenkins ◽  
Catie Minogue ◽  
Phillip M. Mach ◽  
Erika K. Hussey ◽  
...  

Saliva collected from military personnel during training yields potential biomarkers that could be utilized to differentiate types of stress, specifically chronic versus acute.


2022 ◽  
Vol 226 (1) ◽  
pp. S36-S37
Author(s):  
Onur Turkoglu ◽  
Ali Alhousseini ◽  
Sonia Sajja ◽  
Jay Idler ◽  
Sean Stuart ◽  
...  

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Ines Lains ◽  
Kevin Mendez ◽  
Archana Nigalye ◽  
Raviv Katz ◽  
Vivian Paraskevi Douglas ◽  
...  

Plasma metabolomic profiles have been shown to be associated with age-related macular degeneration (AMD) and its severity stages. However, all studies performed to date have been cross-sectional and have not assessed progression of AMD. This prospective, longitudinal, pilot study analyzes, for the first time, the association between plasma metabolomic profiles and progression of AMD over a 3-year period. At baseline and 3 years later, subjects with AMD (n = 108 eyes) and controls (n = 45 eyes) were imaged with color fundus photos for AMD staging and tested for retinal function with dark adaptation (DA). Fasting plasma samples were also collected for metabolomic profiling. AMD progression was considered present if AMD stage at 3 years was more advanced than at baseline (n = 26 eyes, 17%). Results showed that, of the metabolites measured at baseline, eight were associated with 3-year AMD progression (p < 0.01) and 19 (p < 0.01) with changes in DA. Additionally, changes in the levels (i.e., between 3 years and baseline) of 6 and 17 metabolites demonstrated significant associations (p < 0.01) with AMD progression and DA, respectively. In conclusion, plasma metabolomic profiles are associated with clinical and functional progression of AMD at 3 years. These findings contribute to our understanding of mechanisms of AMD progression and the identification of potential therapeutics for this blinding disease.


Sign in / Sign up

Export Citation Format

Share Document