scholarly journals Extracting spatiotemporal commuting patterns from public transit data

2021 ◽  
Vol 1 ◽  
pp. 100004
Author(s):  
Trivik Verma ◽  
Mikhail Sirenko ◽  
Itto Kornecki ◽  
Scott Cunningham ◽  
Nuno A.M. Araújo
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Shenghui Zhao ◽  
Lishan Sun ◽  
Dewen Kong ◽  
Jinghan Cao ◽  
Yan Wang

2021 ◽  
Vol 10 (5) ◽  
pp. 328
Author(s):  
Gergo Pintér ◽  
Imre Felde

In this article, we explore the relationship between cellular phone data and housing prices in Budapest, Hungary. We determine mobility indicators from one months of Call Detail Records (CDR) data, while the property price data are used to characterize the socioeconomic status at the Capital of Hungary. First, we validated the proposed methodology by comparing the Home and Work locations estimation and the commuting patterns derived from the cellular network dataset with reports of the national mini census. We investigated the statistical relationships between mobile phone indicators, such as Radius of Gyration, the distance between Home and Work locations or the Entropy of visited cells, and measures of economic status based on housing prices. Our findings show that the mobility correlates significantly with the socioeconomic status. We performed Principal Component Analysis (PCA) on combined vectors of mobility indicators in order to characterize the dependence of mobility habits on socioeconomic status. The results of the PCA investigation showed remarkable correlation of housing prices and mobility customs.


2021 ◽  
Vol 13 (11) ◽  
pp. 6320
Author(s):  
Hui Chen ◽  
Sven Voigt ◽  
Xiaoming Fu

Understanding commuters’ behavior and influencing factors becomes more and more important every day. With the steady increase of the number of commuters, commuter traffic becomes a major bottleneck for many cities. Commuter behavior consequently plays an increasingly important role in city and transport planning and policy making. Although prior studies investigated a variety of potential factors influencing commuting decisions, most of them are constrained by the data scale in terms of limited time duration, space and number of commuters under investigation, largely owing to their dependence on questionnaires or survey panel data; as such only small sets of features can be explored and no predictions of commuter numbers have been made, to the best of our knowledge. To fill this gap, we collected inter-city commuting data in Germany between 1994 and 2018, and, along with other data sources, analyzed the influence of GDP, housing and the labor market on the decision to commute. Our analysis suggests that the access to employment opportunities, housing price, income and the distribution of the location’s industry sectors are important factors in commuting decisions. In addition, different age, gender and income groups have different commuting patterns. We employed several machine learning algorithms to predict the commuter number using the identified related features with reasonably good accuracy.


Author(s):  
Jung-Hoon Cho ◽  
Seung Woo Ham ◽  
Dong-Kyu Kim

With the growth of the bike-sharing system, the problem of demand forecasting has become important to the bike-sharing system. This study aims to develop a novel prediction model that enhances the accuracy of the peak hourly demand. A spatiotemporal graph convolutional network (STGCN) is constructed to consider both the spatial and temporal features. One of the model’s essential steps is determining the main component of the adjacency matrix and the node feature matrix. To achieve this, 131 days of data from the bike-sharing system in Seoul are used and experiments conducted on the models with various adjacency matrices and node feature matrices, including public transit usage. The results indicate that the STGCN models reflecting the previous demand pattern to the adjacency matrix show outstanding performance in predicting demand compared with the other models. The results also show that the model that includes bus boarding and alighting records is more accurate than the model that contains subway records, inferring that buses have a greater connection to bike-sharing than the subway. The proposed STGCN with public transit data contributes to the alleviation of unmet demand by enhancing the accuracy in predicting peak demand.


Sign in / Sign up

Export Citation Format

Share Document