scholarly journals A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys

Vaccine ◽  
2005 ◽  
Vol 23 (14) ◽  
pp. 1657-1667 ◽  
Author(s):  
Roderick S. Tang ◽  
Kutubuddin Mahmood ◽  
Mia MacPhail ◽  
Jeanne M. Guzzetta ◽  
Aurelia A. Haller ◽  
...  
2020 ◽  
Vol 275 ◽  
pp. 197791
Author(s):  
Ying Liu ◽  
Wenyan Xie ◽  
Miaomiao Chi ◽  
Hongling Wen ◽  
Li Zhao ◽  
...  

2001 ◽  
Vol 75 (10) ◽  
pp. 4594-4603 ◽  
Author(s):  
Alexander C. Schmidt ◽  
Josephine M. McAuliffe ◽  
Brian R. Murphy ◽  
Peter L. Collins

ABSTRACT Recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3), a recombinant bovine PIV3 (rBPIV3) in which the F and HN genes were replaced with their HPIV3 counterparts, was used to express the major protective antigens of respiratory syncytial virus (RSV) in order to create a bivalent mucosal vaccine against RSV and HPIV3. The attenuation of rB/HPIV3 is provided by the host range restriction of the BPIV3 backbone in primates. RSV G and F open reading frames (ORFs) were placed under the control of PIV3 transcription signals and inserted individually into the rB/HPIV3 genome in the promoter-proximal position preceding the nucleocapsid protein gene. The recombinant PIV3 expressing the RSV G ORF (rB/HPIV3-G1) was not restricted in its replication in vitro, whereas the virus expressing the RSV F ORF (rB/HPIV3-F1) was eightfold restricted compared to its rB/HPIV3 parent. Both viruses replicated efficiently in the respiratory tract of hamsters, and each induced RSV serum antibody titers similar to those induced by RSV infection and anti-HPIV3 titers similar to those induced by HPIV3 infection. Immunization of hamsters with rB/HPIV3-G1, rB/HPIV3-F1, or a combination of both viruses resulted in a high level of resistance to challenge with RSV or HPIV3 28 days later. These results describe a vaccine strategy that obviates the technical challenges associated with a live attenuated RSV vaccine, providing, against the two leading viral agents of pediatric respiratory tract disease, a bivalent vaccine whose attenuation phenotype is based on the extensive host range sequence differences of BPIV3.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136474 ◽  
Author(s):  
Wenyan Xie ◽  
Hongling Wen ◽  
Fulu Chu ◽  
Shaofeng Yan ◽  
Bin Lin ◽  
...  

2003 ◽  
Vol 77 (20) ◽  
pp. 10819-10828 ◽  
Author(s):  
Roderick S. Tang ◽  
Jeanne H. Schickli ◽  
Mia MacPhail ◽  
Fiona Fernandes ◽  
Leenas Bicha ◽  
...  

ABSTRACT A live attenuated bovine parainfluenza virus type 3 (PIV3), harboring the fusion (F) and hemagglutinin-neuraminidase (HN) genes of human PIV3, was used as a virus vector to express surface glycoproteins derived from two human pathogens, human metapneumovirus (hMPV) and respiratory syncytial virus (RSV). RSV and hMPV are both paramyxoviruses that cause respiratory disease in young children, the elderly, and immunocompromised individuals. RSV has been known for decades to cause acute lower respiratory tract infections in young children, which often result in hospitalization, while hMPV has only been recently identified as a novel human respiratory pathogen. In this study, the ability of bovine/human PIV3 to express three different foreign transmembrane surface glycoproteins and to induce a protective immune response was evaluated. The RNA-dependent RNA polymerase of paramyxoviruses binds to a single site at the 3′ end of the viral RNA genome to initiate transcription of viral genes. The genome position of the viral gene determines its level of gene expression. The promoter-proximal gene is transcribed with the highest frequency, and each downstream gene is transcribed less often due to attenuation of transcription at each gene junction. This feature of paramyxoviruses was exploited using the PIV3 vector by inserting the foreign viral genes at the 3′ terminus, at position 1 or 2, of the viral RNA genome. These locations were expected to yield high levels of foreign viral protein expression stimulating a protective immune response. The immunogenicity and protection results obtained with a hamster model showed that bovine/human PIV3 can be employed to generate bivalent PIV3/RSV or PIV3/hMPV vaccine candidates that will be further evaluated for safety and efficacy in primates.


2020 ◽  
Vol 95 (2) ◽  
pp. e01512-20
Author(s):  
Bo Liang ◽  
Yumiko Matsuoka ◽  
Cyril Le Nouën ◽  
Xueqiao Liu ◽  
Richard Herbert ◽  
...  

ABSTRACTLive-attenuated pediatric vaccines for intranasal administration are being developed for human respiratory syncytial virus (RSV), an important worldwide pediatric respiratory pathogen that lacks a licensed vaccine or suitable antiviral drug. We evaluated a prime-boost strategy in which primary immunization with RSV was boosted by secondary immunization with RSV or with a chimeric recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3) vector expressing the RSV fusion F protein. The vector-expressed F protein had been engineered (DS-Cav1 mutations) for increased stability in the highly immunogenic prefusion (pre-F) conformation, with or without replacement of its transmembrane and cytoplasmic tail domains with their counterparts from bovine parainfluenza virus type 3 (BPIV3) F protein to direct incorporation into the vector virion for increased immunogenicity. In hamsters that received a primary infection with RSV, a booster infection with RSV ∼6 weeks later was completely restricted for producing infectious virus but induced a significant increase in the serum RSV-plaque-reduction neutralizing antibody titer (RSV-PRNT). Boosting instead with the rB/HPIV3-RSV-pre-F vectors resulted in efficient replication and induced significantly higher RSV-PRNTs than RSV. In African green monkeys that received a primary infection with RSV, a booster infection with RSV ∼2, ∼6, or ∼15 months later was highly restricted, whereas booster infections with the vectors had robust replication. Compared with RSV, boosts with the vectors induced 7- to 15-fold higher titers of RSV-specific serum antibodies with high neutralizing activity, as well as significantly higher titers of RSV-specific mucosal IgA antibodies. These findings support further development of this heterologous prime-boost strategy.IMPORTANCE Immune responses to RSV in infants can be reduced due to immunological immaturity and immunosuppression by RSV-specific maternal antibodies. In infants and young children, two infections with wild-type RSV typically are needed to achieve the titers of RSV-specific serum antibodies and protection against illness that are observed in adults. Therefore, a boost might substantially improve the performance of live pediatric RSV vaccines presently being developed. Hamsters and African green monkeys received a primary intranasal infection with RSV and were given a boost with RSV or a parainfluenza virus (PIV) vector expressing RSV fusion protein engineered for enhanced immunogenicity. The RSV boost was highly restricted but induced a significant increase in serum RSV-neutralizing antibodies. The PIV vectors replicated efficiently and induced significantly higher antibody responses. The use of an attenuated PIV vector expressing RSV antigen to boost a primary immunization with an attenuated RSV warrants further evaluation.


Vaccine ◽  
2007 ◽  
Vol 25 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Catherine E. Greer ◽  
Fengmin Zhou ◽  
Harold S. Legg ◽  
Zequn Tang ◽  
Silvia Perri ◽  
...  

2004 ◽  
Vol 78 (20) ◽  
pp. 11198-11207 ◽  
Author(s):  
Roderick S. Tang ◽  
Mia MacPhail ◽  
Jeanne H. Schickli ◽  
Jasmine Kaur ◽  
Christopher L. Robinson ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) causes respiratory disease in young children, the elderly, and immunocompromised individuals, often resulting in hospitalization and/or death. After more than 40 years of research, a Food and Drug Administration-approved vaccine for RSV is still not available. In this study, a chimeric bovine/human (b/h) parainfluenza virus type 3 (PIV3) expressing the human PIV3 (hPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) proteins from an otherwise bovine PIV3 (bPIV3) genome was employed as a vector for RSV antigen expression with the aim of generating novel RSV vaccines. b/h PIV3 vaccine candidates expressing native or soluble RSV F proteins were evaluated for efficacy and immunogenicity in a nonhuman primate model. b/h PIV3 is suited for development of pediatric vaccines since bPIV3 had already been evaluated in clinical studies in 1- and 2-month-old infants and was found to be safe, immunogenic, and nontransmissible in a day care setting (Karron et al., Pediatr. Infect. Dis. J. 15:650-654, 1996; Lee et al., J. Infect. Dis. 184:909-913, 2001). African green monkeys immunized with b/h PIV3 expressing either the native or soluble RSV F protein were protected from challenge with wild-type RSV and produced RSV neutralizing and RSV F-protein specific immunoglobulin G serum antibodies. The PIV3-vectored RSV vaccines evaluated here further underscore the utility of this vector system for developing safe and immunogenic pediatric respiratory virus vaccines.


2017 ◽  
Vol 162 (8) ◽  
pp. 2409-2413
Author(s):  
Ryosuke Matsuura ◽  
Marina Takada ◽  
Takehiro Kokuho ◽  
Takamitsu Tsuboi ◽  
Ken-ichiro Kameyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document