human metapneumovirus
Recently Published Documents


TOTAL DOCUMENTS

1091
(FIVE YEARS 174)

H-INDEX

76
(FIVE YEARS 5)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Nellie Hani ◽  
Wendi Gornick ◽  
Beth Huff ◽  
Jamie Atienza ◽  
Jasjit Singh

2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohiro Ogawa ◽  
Keiko Kan-o ◽  
Ayaka Shiota ◽  
Akitaka Fujita ◽  
Yumiko Ishii ◽  
...  

Bronchial epithelial cells are front sentinels eliciting innate and adaptive immunity to respiratory viral pathogens. Recognition of viral double-stranded RNA induces antiviral interferon (IFN) responses in bronchial epithelial cells. Co-inhibitory molecules programmed cell death 1 ligand 1 (PD-L1) and ligand 2 (PD-L2) were also induced on bronchial epithelial cells, which bind programmed cell death 1 on T cell and inhibit the function of virus-specific cytotoxic T lymphocyte. A previous study showed that antiviral type I IFN increased PD-L1 and PD-L2 expression in cultured melanoma cells. However, it remains unknown whether antiviral IFNs affect PD-L1 and PD-L2 expression in bronchial epithelial cells. In addition, we previously reported that inhibition of PI3Kδ signaling enhanced antiviral IFN responses in human primary bronchial epithelial cells (PBECs). Here we assessed the effect of exogenous IFNs or a selective PI3Kδ inhibitor IC87114 on PD-L1 and PD-L2 in PBECs stimulated with a synthetic double-stranded RNA poly I:C or human metapneumovirus. Treatment with IFNβ or IFNλ increased PD-L1 and PD-L2, and IFNβ or IFNλ treatment plus poly I:C further increased both expressions. Treatment with IC87114 or transfection with siRNA targeting PI3K p110δ enhanced poly I:C–induced gene and protein expression of PD-L2, whereas IC87114 suppressed poly I:C–induced PD-L1. IC87114 enhanced poly I:C–induced gene expression of IFNβ, IFNλ, and IFN-regulated genes via increased TBK1 and IRF3 phosphorylation. Transfection with siIRF3 counteracted the enhancement of poly I:C–induced PD-L2 by IC87114, whereas IC87114 suppressed poly I:C–induced PD-L1 regardless of transfection with siNC or siIRF3. Similar effects of IC87114 on PD-L1 and PD-L2 expression were observed in human metapneumovirus–infected PBECs. We showed for the first time that type I and type III IFNs induced the expression of PD-L1 and PD-L2 in PBECs. Our findings suggest that during viral infections, inhibition of PI3Kδ differentially regulates PD-L1 and PD-L2 expression in bronchial epithelial cells.


2021 ◽  
Author(s):  
Hortense Decool ◽  
Benjamin Bardiaux ◽  
Luis Checa Ruano ◽  
Olivier Sperandio ◽  
Jenna Fix ◽  
...  

Human metapneumovirus (HMPV) causes severe respiratory diseases in young children. The HMPV RNA genome is encapsidated by the viral nucleoprotein (N), forming an RNA-N complex (N Nuc ), which serves as template for genome replication and mRNA transcription by the RNA-dependent RNA polymerase (RdRp). The RdRp is formed by the association of the large polymerase subunit (L), which has RNA polymerase, capping and methyltransferase activities, and the tetrameric phosphoprotein (P). P plays a central role in the RdRp complex by binding to N Nuc and L, allowing the attachment of the L polymerase to the N Nuc template. During infection these proteins concentrate in cytoplasmic inclusion bodies (IBs) where viral RNA synthesis occurs. By analogy to the closely related pneumovirus respiratory syncytial virus (RSV), it is likely that the formation of IBs depends on the interaction between HMPV P and N Nuc , which has not been demonstrated yet. Here, we finely characterized the binding P- N Nuc interaction domains by using recombinant proteins, combined with a functional assay for the polymerase complex activity, and the study of the recruitment of these proteins to IBs by immunofluorescence. We show that the last 6 C-terminal residues of HMPV P are necessary and sufficient for binding to N Nuc , that P binds to the N-terminal domain of N (N NTD ), and identified conserved N residues critical for the interaction. Our results allowed to propose a structural model for the HMPV P-N Nuc interaction. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of severe respiratory infections in children but also affects human populations of all ages worldwide. Nowadays, no vaccine or efficient antiviral treatments are available for this pneumovirus. A better understanding of the molecular mechanisms involved in viral replication could help the design or discovery of specific antiviral compounds. In this work we have investigated the interaction between two major viral proteins involved in HMPV RNA synthesis, the N and P proteins. We finely characterized their domains of interaction, and identified a pocket on the surface of the N protein, a potential target of choice for the design of compounds interfering with N-P complexes and inhibiting viral replication.


2021 ◽  
Vol 305 ◽  
pp. 198568
Author(s):  
Weidong Qian ◽  
Jie Huang ◽  
Ting Wang ◽  
Xiaoxian He ◽  
Guozhang Xu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Margot Miranda-Katz ◽  
John J. Erickson ◽  
Jie Lan ◽  
Alwyn Ecker ◽  
Yu Zhang ◽  
...  

AbstractHuman metapneumovirus (HMPV) is a leading cause of acute lower respiratory tract illness in children and adults. Repeated infections are common and can be severe in young, elderly, and immunocompromised persons due to short-lived protective humoral immunity. In turn, few protective T cell epitopes have been identified in humans. Thus, we infected transgenic mice expressing the common human HLA MHC-I allele B*07:02 (HLA-B7) with HMPV and screened a robust library of overlapping and computationally predicted HLA-B7 binding peptides. Six HLA-B7-restricted CD8+ T cell epitopes were identified using ELISPOT screening in the F, M, and N proteins, with M195–203 (M195) eliciting the strongest responses. MHC-tetramer flow cytometric staining confirmed HLA-B7 epitope-specific CD8+ T cells migrated to lungs and spleen of HMPV-immune mice. Immunization with pooled HLA-B7-restricted peptides reduced viral titer and protected mice from virulent infection. Finally, we confirmed that CD8+ T cells from HLA-B7 positive humans also recognize the identified epitopes. These results enable identification of HMPV-specific CD8+ T cells in humans and help to inform future HMPV vaccine design.


Author(s):  
Lei Ji ◽  
Liping Chen ◽  
Deshun Xu ◽  
Xiaofang Wu

Abstract Background Human metapneumovirus (hMPV) is one of the important pathogens in infant respiratory tract infection. However, the molecular epidemiology of hMPV among children < 14 years of age hospitalized with severe acute respiratory infection (SARI) is unclear. We investigated the hMPV infection status and genotypes of children hospitalized with SARI from January 2016 to December 2020 in Huzhou, China. Methods A nasopharyngeal flocked swab, nasal wash, or nasopharyngeal swab/or opharyngeal swab combination sample was collected from children with SARI in Huzhou from January 2016 to December 2020. Quantitative reverse transcription-polymerase chain reaction was performed to detect hMPV RNA. The hMPV F gene was amplified and sequenced, followed by analysis using MEGA software (ver. 7.0). Epidemiological data were analyzed using Microsoft Excel 2010 and SPSS (ver. 22.0) software. Results A total of 1133 children with SARI were recruited from 2016 to 2020. Among them, 56 (4.94%) were positive for hMPV-RNA. Children < 5 years of age accounted for 85.71% of the positive cases. The hMPV incidence was high in spring and winter, especially in December and January to March. Phylogenetic analysis of the F-gene sequences of 28 hMPV strains showed that the A1, B1, and B2 genotypes were prevalent in Huzhou, and the dominant hMPV genotype varied according to surveillance year. Conclusions HMPV is an important respiratory pathogen in children in Huzhou, with a high incidence in winter and spring in children < 5 years of age. In this study, genotypes A1, B1, and B2 were the most prevalent.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1190
Author(s):  
Caroline Chupin ◽  
Andrés Pizzorno ◽  
Aurélien Traversier ◽  
Pauline Brun ◽  
Daniela Ogonczyk-Makowska ◽  
...  

The development of a live-attenuated vaccine (LAV) for the prevention of human metapneumovirus (HMPV) infection is often hampered by the lack of highly efficient and scalable cell-based production systems that support eventual global vaccine production. Avian cell lines cultivated in suspension compete with traditional cell platforms used for viral vaccine manufacture. We investigated whether the DuckCelt®-T17 avian cell line (Vaxxel), previously described as an efficient production system for several influenza strains, could also be used to produce a new HMPV LAV candidate (Metavac®, SH gene-deleted A1/C-85473 HMPV). To that end, we characterized the operational parameters of MOI, cell density, and trypsin addition to achieve the optimal production of Metavac®, and demonstrated that the DuckCelt®-T17 cell line is permissive and well-adapted to the production of the wild-type A1/C-85473 HMPV and the Metavac® vaccine candidate. Moreover, our results confirmed that the LAV candidate produced in DuckCelt®-T17 cells conserves its advantageous replication properties in LLC-MK2 and 3D-reconstituted human airway epithelium models, and its capacity to induce efficient neutralizing antibodies in a BALB/c mouse model. Our results suggest that the DuckCelt®-T17 avian cell line is a very promising platform for the scalable in-suspension serum-free production of the HMPV-based LAV candidate Metavac®.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Li Li ◽  
Heping Wang ◽  
Ailiang Liu ◽  
Rongjun Wang ◽  
Tingting Zhi ◽  
...  

Abstract Background The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. Methods This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children’s Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. Results A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). Conclusions Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.


Sign in / Sign up

Export Citation Format

Share Document