Introducing point and deletion mutations into the P/C gene of human parainfluenza virus type 1 (HPIV1) by reverse genetics generates attenuated and efficacious vaccine candidates

Vaccine ◽  
2006 ◽  
Vol 24 (14) ◽  
pp. 2674-2684 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Emerito Amaro-Carambot ◽  
Sonja R. Surman ◽  
Peter L. Collins ◽  
Brian R. Murphy ◽  
...  
Vaccine ◽  
2010 ◽  
Vol 28 (3) ◽  
pp. 767-779 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Ann-Marie Cruz ◽  
Jim Boonyaratanakornkit ◽  
Janice Esker ◽  
Adam Castaño ◽  
...  

2007 ◽  
Vol 4 (1) ◽  
pp. 67 ◽  
Author(s):  
Emmalene J Bartlett ◽  
Adam Castaño ◽  
Sonja R Surman ◽  
Peter L Collins ◽  
Mario H Skiadopoulos ◽  
...  

2004 ◽  
Vol 78 (4) ◽  
pp. 2017-2028 ◽  
Author(s):  
Jason T. Newman ◽  
Jeffrey M. Riggs ◽  
Sonja R. Surman ◽  
Josephine M. McAuliffe ◽  
Teresa A. Mulaikal ◽  
...  

ABSTRACT Human parainfluenza virus type 1 (HPIV1) is a significant cause of respiratory tract disease in infants and young children for which a vaccine is needed. In the present study, we sought to attenuate HPIV1 by the importation of one or more known attenuating point mutations from heterologous paramyxoviruses into homologous sites in HPIV1. The introduced mutations were derived from three attenuated paramyxoviruses: (i) HPIV3cp45, a live-attenuated HPIV3 vaccine candidate containing multiple attenuating mutations; (ii) the respiratory syncytial virus cpts530 with an attenuating mutation in the L polymerase protein; and (iii) a murine PIV1 (MPIV1) attenuated by a mutation in the accessory C protein. Recombinant HPIV1 (rHPIV1) mutants bearing a single imported mutation in C, any of three different mutations in L, or a pair of mutations in F exhibited a 100-fold or greater reduction in replication in the upper or lower respiratory tract of hamsters. Both temperature-sensitive (ts) (mutations in the L and F proteins) and non-ts (the mutation in the C protein) attenuating mutations were identified. rHPIV1 mutants containing a combination of mutations in L were generated that were more attenuated than viruses bearing the individual mutations, showing that the systematic accretion of mutations can yield progressive increases in attenuation. Hamsters immunized with rHPIV1 mutants bearing one or two mutations developed neutralizing antibodies and were resistant to challenge with wild-type HPIV1. Thus, importation of attenuating mutations from heterologous viruses is an effective means for rapidly identifying mutations that attenuate HPIV1 and for generating live-attenuated HPIV1 vaccine candidates.


2008 ◽  
Vol 82 (16) ◽  
pp. 8059-8070 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Margaret Hennessey ◽  
Mario H. Skiadopoulos ◽  
Alexander C. Schmidt ◽  
Peter L. Collins ◽  
...  

ABSTRACT Human parainfluenza virus type 1 (HPIV1) is a significant cause of pediatric respiratory disease in the upper and lower airways. An in vitro model of human ciliated airway epithelium (HAE), a useful tool for studying respiratory virus-host interactions, was used in this study to show that HPIV1 selectively infects ciliated cells within the HAE and that progeny virus is released from the apical surface with little apparent gross cytopathology. In HAE, type I interferon (IFN) is induced following infection with an HPIV1 mutant expressing defective C proteins with an F170S amino acid substitution, rHPIV1-CF170S, but not following infection with wild-type HPIV1. IFN induction coincided with a 100- to 1,000-fold reduction in virus titer, supporting the hypothesis that the HPIV1 C proteins are critical for the inhibition of the innate immune response. Two recently characterized live attenuated HPIV1 vaccine candidates expressing mutant C proteins were also evaluated in HAE. The vaccine candidates, rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710-11, which contain temperature-sensitive (ts) attenuating (att) and non-ts att mutations, were highly restricted in growth in HAE at permissive (32°C) and restrictive (37°C) temperatures. The viruses grew slightly better at 37°C than at 32°C, and rHPIV1-CR84G/Δ170HNT553ALY942A was less attenuated than rHPIV1-CR84G/Δ170HNT553ALΔ1710-11. The level of replication in HAE correlated with that previously observed for African green monkeys, suggesting that the HAE model has potential as a tool for the preclinical evaluation of HPIV1 vaccines, although how these in vitro data will correlate with vaccine virus replication in seronegative human subjects remains to be seen.


Vaccine ◽  
2005 ◽  
Vol 23 (38) ◽  
pp. 4631-4646 ◽  
Author(s):  
Emmalene J. Bartlett ◽  
Emerito Amaro-Carambot ◽  
Sonja R. Surman ◽  
Jason T. Newman ◽  
Peter L. Collins ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009908
Author(s):  
Yuki Kurebayashi ◽  
Shringkhala Bajimaya ◽  
Masahiro Watanabe ◽  
Nicholas Lim ◽  
Michael Lutz ◽  
...  

Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.


2016 ◽  
Vol 65 (8) ◽  
pp. 793-803 ◽  
Author(s):  
Tanja Košutić-Gulija ◽  
Anamarija Slovic ◽  
Sunčanica Ljubin-Sternak ◽  
Gordana Mlinarić-Galinović ◽  
Dubravko Forčić

Sign in / Sign up

Export Citation Format

Share Document