scholarly journals A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity

Vaccine ◽  
2007 ◽  
Vol 25 (20) ◽  
pp. 4093-4102 ◽  
Author(s):  
Ricardo Carrion ◽  
Jean L. Patterson ◽  
Curtis Johnson ◽  
Monica Gonzales ◽  
Carmen R. Moreira ◽  
...  
Author(s):  
David X Liu ◽  
Donna L Perry ◽  
Lisa Evans DeWald ◽  
Yingyun Cai ◽  
Katie R Hagen ◽  
...  

npj Vaccines ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Derek R. Stein ◽  
Bryce M. Warner ◽  
Geoff Soule ◽  
Kevin Tierney ◽  
Kathy L. Frost ◽  
...  

2016 ◽  
Vol 54 (3) ◽  
pp. 549-562 ◽  
Author(s):  
T. M. Bell ◽  
C. I. Shaia ◽  
J. J. Bearss ◽  
M. E. Mattix ◽  
K. A. Koistinen ◽  
...  
Keyword(s):  

Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 579 ◽  
Author(s):  
Wun-Ju Shieh ◽  
Shuiyun Lan ◽  
Sherif R. Zaki ◽  
Hinh Ly ◽  
Yuying Liang

Lassa virus (LASV) is a mammarenavirus (arenavirus) that causes zoonotic infection in humans that can lead to fatal hemorrhagic Lassa fever (LF) disease. Currently, there are no FDA-approved vaccines or therapeutics against LASV. Development of treatments against LF and other related arenavirus-induced hemorrhagic fevers (AHFs) requires relevant animal models that can recapitulate clinical and pathological features of AHF diseases in humans. Laboratory mice are generally resistant to LASV infection, and non-human primates, while being a good animal model for LF, are limited by their high cost. Here, we describe a small, affordable, and convenient animal model that is based on outbred Hartley guinea pigs infected with Pichinde virus (PICV), a mammarenavirus that is non-pathogenic in humans, for use as a surrogate model of human LF. We conducted a detailed analysis of tissue histopathology and immunohistochemical analysis of different organs of outbred Hartley guinea pigs infected with different PICV strains that show differential disease phenotypes and pathologies. Comparing to infection with the avirulent PICV strain (P2 or rP2), animals infected with the virulent strain (P18 or rP18) show extensive pathological changes in different organs that sustain high levels of virus replication. The similarity of tissue pathology and viral antigen distribution between the virulent PICV–guinea pig model and lethal human LASV infection supports a role of this small animal model as a surrogate model of studying human LF in order to understand its pathogenesis and for evaluating potential preventative and therapeutic options against AHFs.


2020 ◽  
Vol 183 ◽  
pp. 104928
Author(s):  
Thanhthao Huynh ◽  
Joy M. Gary ◽  
Stephen R. Welch ◽  
JoAnn Coleman-McCray ◽  
Jessica R. Harmon ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Yingyun Cai ◽  
Masaharu Iwasaki ◽  
Daisuke Motooka ◽  
David X. Liu ◽  
Shuiqing Yu ◽  
...  

ABSTRACT Lassa virus (LASV) poses a significant public health problem within the regions of Lassa fever endemicity in Western Africa. LASV infects several hundred thousand individuals yearly, and a considerable number of Lassa fever cases are associated with high morbidity and lethality. No approved LASV vaccine is available, and current therapy is limited to an off-label usage of ribavirin that is only partially effective and associated with significant side effects. The impact of Lassa fever on human health, together with the limited existing countermeasures, highlights the importance of developing effective vaccines against LASV. Here, we present the development and characterization of a recombinant LASV (rLASV) vaccine candidate [rLASV(IGR/S-S)], which is based on the presence of the noncoding intergenic region (IGR) of the small (S) genome segment (S-IGR) in both large (L) and S LASV segments. In cultured cells, rLASV(IGR/S-S) was modestly less fit than wild-type rLASV (rLASV-WT). rLASV(IGR/S-S) was highly attenuated in guinea pigs, and a single subcutaneous low dose of the virus completely protected against otherwise lethal infection with LASV-WT. Moreover, rLASV(IGR/S-S) was genetically stable during serial passages in cultured cells. These findings indicate that rLASV(IGR/S-S) can be developed into a LASV live-attenuated vaccine (LAV) that has the same antigenic composition as LASV-WT and a well-defined mechanism of attenuation that overcomes concerns about increased virulence that could be caused by genetic changes in the LAV during multiple rounds of multiplication. IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever cases. No U.S. Food and Drug Administration-licensed countermeasures are available to prevent or treat LASV infection. We describe the generation of a novel LASV live-attenuated vaccine candidate rLASV(IGR/S-S), which is based on the replacement of the large genomic segment noncoding intergenic region (IGR) with that of the small genome segment. rLASV(IGR/S-S) is less fit in cell culture than wild-type virus and does not cause clinical signs in inoculated guinea pigs. Importantly, rLASV(IGR/S-S) protects immunized guinea pigs against an otherwise lethal exposure to LASV.


2016 ◽  
Vol 133 ◽  
pp. 218-222 ◽  
Author(s):  
Robert W. Cross ◽  
Chad E. Mire ◽  
Luis M. Branco ◽  
Joan B. Geisbert ◽  
Megan M. Rowland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document