In situ crystallization of highly conducting and transparent ITO thin films deposited by RF magnetron sputtering

Vacuum ◽  
2016 ◽  
Vol 132 ◽  
pp. 91-94 ◽  
Author(s):  
K. Aijo John ◽  
Rachel Reena Philip ◽  
P. Sajan ◽  
T. Manju
2014 ◽  
Vol 601 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Kyong Chan Heo ◽  
Phil Kook Son ◽  
Youngku Sohn ◽  
Jonghoon Yi ◽  
Jin Hyuk Kwon ◽  
...  

2005 ◽  
Vol 875 ◽  
Author(s):  
A. R. Abuzir ◽  
W. J. Yeh

AbstractDue to their large magnetic anisotropy perpendicular to the film plane, barium ferrite thick films (BaFe12O19, or BaM) with c-axis orientation are attractive candidates for microwave applications [1,2]. Barium ferrite thin films on silicon substrates without under layer have been deposited under various conditions by RF magnetron sputtering. The structure of the as-grown films is amorphous. External annealing in air has been done at 950°C for ten minutes to crystallize the films. C-axis oriented thin films with squareness of about 0.87 and coercivity of about 3.8KOe are obtained.Thick BaM films with c-axis orientation are difficult to achieve with one single deposition. Multilayer technique looks promising to grow thick films [3]. The external annealing process is difficult to incorporate with the multilayer procedure. An in-situ annealing procedure has been developed to obtain films, which can be used as the basic component for future multilayer deposition. Barium ferrites are first magnetron sputtered on bare silicon substrates in Ar + O2 atmosphere at substrate temperature of 500-600°C, the deposition pressure was kept about 0.008 torr. After the deposition, the temperature of the substrate is immediately increased to about 860°C for ten minutes in 140 torr of argon (80%) and oxygen (20%) mixture of gas, which was introduced into the chamber without breaking the vacuum. With the in-situ process, c-axis oriented thin films of 0.88 squareness and coercivity value of about 4.3KOe are obtained.Both annealing methods seem to have the similar effect on the perpendicular squareness and coercivity at various film thicknesses. The average value of the saturation magnetization Ms obtained from the in-situ annealing using multilayer technique is higher than that of the external one. We have grown films up to 1.0 micron thickness using the multilayer technique, in which three layers of 0.3 μm thickness each are deposited until the final thickness is reached. After the deposition of each layer, it was in-situ annealed before starting the deposition of the next layer. With the multilayer technique, coercivity of about 3.5 KOe and average value of the saturation magnetization Ms of about 4.0 K Gauss is obtained.


2013 ◽  
Vol 20 (05) ◽  
pp. 1350045 ◽  
Author(s):  
BO HE ◽  
LEI ZHAO ◽  
JING XU ◽  
HUAIZHONG XING ◽  
SHAOLIN XUE ◽  
...  

In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω• cm , while the carrier concentration and mobility are as high as 3.461 × 1021 atom∕cm3 and 19.1 cm2∕V⋅s, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.


1989 ◽  
Vol 169 ◽  
Author(s):  
R. L. Meng ◽  
Y. Q. Wang ◽  
Y. Y. Sun ◽  
Li Gao ◽  
P. H. Hor ◽  
...  

AbstractThe synthesis parameters have been systematically examined for the in situ growth of high temperature superconducting Y‐Ba‐Cu‐0 thin films from a stoichiometric target by rf magnetron sputtering. By properly adjusting the deposition temperature, the total sputtering (O2+Ar)‐pressure and the O2‐partial pressure, we have reproducibly obtained 123 YBCO films with a zero resistivity temperature Tcz = 84 K and a transition width of 3 K°. The films so obtained have excellent surface morphology and a surface roughness better than ∼ 5 nm.


Sign in / Sign up

Export Citation Format

Share Document