Hermetically sealed porous-wall hollow microspheres enabled by monolithic glass coatings: Potential for thermal insulation applications

Vacuum ◽  
2021 ◽  
pp. 110667
Author(s):  
Kai Li ◽  
Gabriel M. Veith ◽  
Meghan E. Lamm ◽  
Annie Stevens ◽  
Tej Lamichhane ◽  
...  
Crystals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohamed Abd Elrahman ◽  
Mohamed E. El Madawy ◽  
Sang-Yeop Chung ◽  
Stanisław Majer ◽  
Osama Youssf ◽  
...  

Improving the thermal insulation properties of cement-based materials is the key to reducing energy loss and consumption in buildings. Lightweight cement-based composites can be used efficiently for this purpose, as a structural material with load bearing ability or as a non-structural one for thermal insulation. In this research, lightweight cement pastes containing fly ash and cement were prepared and tested. In these mixes, three different techniques for producing air voids inside the cement paste were used through the incorporation of aluminum powder (AL), air entraining agent (AA), and hollow microspheres (AS). Several experiments were carried out in order to examine the structural and physical characteristics of the cement composites, including dry density, compressive strength, porosity and absorption. A Hot Disk device was used to evaluate the thermal conductivity of different cement composites. In addition, X-ray micro-computed tomography (micro-CT) was adopted to investigate the microstructure of the air-entrained cement pastes and the spatial distribution of the voids inside pastes without destroying the specimens. The experimental results obtained showed that AS specimens with admixture of hollow microspheres can improve the compressive strength of cement composites compared to other air entraining admixtures at the same density level. It was also confirmed that the incorporation of aluminum powder creates large voids, which have a negative effect on specimens’ strength and absorption.


2017 ◽  
Vol 135 (11) ◽  
pp. 46025 ◽  
Author(s):  
Xiong-Wei Zhao ◽  
Chong-Guang Zang ◽  
Ya-Lun Sun ◽  
Yu-Long Zhang ◽  
Yu-Quan Wen ◽  
...  

2017 ◽  
Vol 134 (18) ◽  
Author(s):  
Chunling Zhang ◽  
Chunyu Zhang ◽  
Rong Huang ◽  
Xiaoyan Gu

2019 ◽  
Vol 205 ◽  
pp. 109533 ◽  
Author(s):  
Xiaofei Ji ◽  
Huanyu Zhang ◽  
Zhitao Bai ◽  
Guibo Qiu ◽  
Min Guo ◽  
...  

2014 ◽  
Vol 9 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Zhi Yuan Wang ◽  
Feng Ping Wang ◽  
Yan Li ◽  
Ming Yan Li ◽  
Muhammad Zubair Iqbal ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 69-78
Author(s):  
V. V. Mozharovsky ◽  
◽  
D. S. Kuzmenkov ◽  
E. A. Golubeva ◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document